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PART B (Graded by Perry)

PROBLEM 1 (3+3+3+3+3 points)

True or false? Justify your answers.
(A) {an2

: n ≥ 0} is context free.
(B) {anbm : n < m < 2n} is context free.
(C) {anb∗anb∗an : n ∈ N} is context free.
(D) If L is context-free and R is regular, then L−R is context-free.
(E) If L is context-free and R is regular, then R− L is context-free.

(A) False. Suppose {an2
: n ≥ 0} were context free, and so had pumping length p. Consider ap

2
,

which has partitioning uvxyz. uv2xy2z = ap
2+|vy|. Since |vxy| ≤ p, 1 ≤ |vy| ≤ p, it follows that

uv2xy2z has length between p2 + 1 and p2 + p = p(p + 1). But, p2 and (p + 1)2 are consecutive
squares, so any number strictly between them cannot be a square. Thus, uv2xy2z cannot have a
length which is a perfect square, and so is not in {an2

: n ≥ 0}, contradicting that it is context free.

(B) True. It is generated by the grammar:
S → aSb|aSbb|aabbb
All strings generated by the grammar are in {anbm : n < m < 2n}: Let s be the number of

steps in the derivation of some string w. If s = 1, then w = aabbb, and n = 2 < m = 3 < 2n = 4,
as desired. Next, assume that all strings derived in S or fewer steps are in the desired set. Then,
consider a derivation of length S + 1. The first step of this derivation adds 1 a, and either 1 or 2
b’s, followed by a derivation of length S. Say that this derivation of length S added n a’s and m
b’s to the string. Then this derivation of length S + 1 has n+ 1 a’s, and either m+ 1 or m+ 2 b’s.
Observe that since n < m < 2n, it follows that n+1 < m+1 < 2n+2, and n+1 < m+2 < 2n+2.
So, the derivation of length S + 1 generates a string in the set as desired.

Ever string in {anbm : n < m < 2n} is generated by the grammar: To generate anbm such
that n < m < 2n, follow the first rule 2n − 1 − m times, the second rule m − n − 1 times, and



the last rule once. This will generate a string of 2n− 1−m+m− n− 1 + 2 = n a’s, followed by
2n− 1−m+ 2m− 2n− 2 + 3 = m b’s, as desired.

(C) False. Let L = {anb∗anb∗an : n ∈ N}. Since CFL are closed under intersection with regular
languages, then if L is regular then so is L′ = L ∩ a∗ba∗ba∗. So, suppose L′ were context free with
pumping length p. Consider w = apbapbap, with partitioning w = uvxyz. Neither v nor y contains
a b, since then uxz would have fewer than 2 b’s and not be in the language. So, v and y each must
be entirely within one of the groups of a’s. So, uxz contains fewer a’s in at least one of the groups
of a’s, but not in all 3. So, there must be one group of a’s in uxz that has p a’s, and one group
that has < p a’s, and so uxz 6∈ L′, contradicting that L′ is context free, and so that L is context
free.

(D) True. L−R = L∩R, which must be CF since CFLs are closed under intersection with regular
languages, and regular languages are closed under complement.

(E) False. Let R = Σ∗. The claim then becomes equivalent to the following: if L is CF, then so is
L. However, since CFLs are not closed under complement, this is false.

PROBLEM 2 (5 points)

Prove that if M is a PDA and there exists a number k such that for all w ∈ L(M), the size of the
stack is at most k in each step of every possible computation of w on M , then L(M) is regular.

(A)
The main idea is extract the finite automata component of PDA M and create multiple copies

of it, one for each possible stack configuration of M . This enables us to simulate the computation
of M without a stack, hence giving us an NFA recognizing L(M).

Formally, let M = (Q,Σ,Γ, δ, q0, F ). Since the stack length never exceeds k (on an accepting
computation), consider the set S = {s ∈ Γ∗ : |s| ≤ k}. The size of S is bounded by |Γ + 1|k and
hence is finite.

Our new NFA N will consist of |S| copies of the states Q, one for each s ∈ S. The com-
putation on N starts with the start state of Qε, denoted as (q0, ε). The formal description of
N = (Q′,Σ, δ′, q′0, F

′) follows:

Q′ = Q× S,
δ′((q, sγ), σ) = {(q′, sγ′) : (q′, γ′) ∈ δ(q, σ, γ) and sγ, sγ′ ∈ S},

q′0 = (q0, ε)

F ′ = F × S.

The equivalence of the PDA M and the NFA N can be shown as follows: Observe that there
is a transition in N from (q, t) to (q′, t′) after reading σ, if and only if there is a transition in M
upon reading σ which starts in state q with stack t, and ends in state q′ with stack t′, and t, t′ ∈ S.
It follows that there is computation in M which has only stack states in S and ends in a state in
F , iff there is a computation in N which ends in a state in F × S = F ′. But these are exactly the
accepting computations in the respective automata. So, since they accept all and only the same
strings, they accept the same language, as desired.



PROBLEM 3 (Challenge! 3 points)

Write a context-sensitive grammar for the language {anbncn : n ≥ 0}.
S → DADBDC

DA → ε|DAA
DB → ε
DC → ε
Aa→ aA
Bb→ bB
ADB → aDBB
BDC → bDCc
The grammar works as follows: You start with DADBDC . These each represent dividers,

separating the string into equal sections of As, Bs, and Cs. They can all transition to ε at any time
to be removed from the string. DA can also produce any number of A’s. Each time an A is added
to the string, it can be removed (and so create a valid string of all terminals) in only one way - by
having that A switch position with each of the a’s until it is adjacent to DB, turning into aDBB.
This adds an a in the string in the correct place, but then creates a B which can also be removed
in only one way - switching places with b’s until adjacent with DC , at which point it generates an
additional b and c in the correct places. The result of this entire process is that for each A added,
exactly 1 a, b, and c is added in the string in the right place.

So, let the number of A’s generated by DA (number of times DA → DAA is used in the
derivation of a string) be n. By above, this adds n each of a’s, b’s, and c’s. And, all a’s are between
DA and DB, all b’s between DB and DC , and all c’s after DC . So, this derives the string anbncn.
Since the grammar can generate all and only strings of that form, it’s language is as desired.


