Exercise 0.1. For any language L, let $\text{NOREPEATB}(L)$ be the language of strings in L, but with any b's that are immediately preceded by another b removed. So, for example, if $babbaababbb \in L$, then $babaabab \in \text{NOREPEATB}(L)$. Show that if L is regular, then so is $\text{NOREPEATB}(L)$.

Solution:

We want to construct a machine that accepts strings s without consecutive b's such that some number of b's can be added after any b in s to yield a string in L. The intuition is to modify a DFA for L so that its states track the previous character read. If the previous character read was an a, then it should act much like the DFA for L. If the previous character read was a b, then the machine should be able to follow any number of ϵ transitions which would simulate what would happen if the DFA for L read that number of b's instead of just one.

Specifically, if $M = (Q, \Sigma, \delta, q_0, F)$ is the original DFA, let $M' = (Q', \Sigma, \delta', q_0, F')$ be the NFA that will recognize $\text{NOREPEATB}(L)$. We define Q' as follows: for each $q_i \in Q$, let there be a corresponding $q_i', q_i'' \in Q'$, i.e., Q' contains every state in Q plus a corresponding “prime” state. We will use this notation throughout the proof. Define δ' as follows: suppose $\delta(q_i, a) = q_j$ and $\delta(q_i, b) = q_k$. Then

\[
\begin{align*}
\delta'(q_i, a) &= \{q_j\} \\
\delta'(q_i, b) &= \{q_k\} \\
\delta'(q_i', a) &= \{q_j\} \\
\delta'(q_i', \epsilon) &= \{q_k\} \\
\delta'(q_i', b) &= \emptyset
\end{align*}
\]

To summarize, M' behaves identically to M when it reads a: if it is in a prime or a non-prime state, it transitions to the non-prime state that corresponds to the state M would transition to. When M' reads b, its behavior depends on the previous input. If it is in a non-prime state, it transitions to the prime state that corresponds to the state M would transition to. If it is in a prime state, it enters into a null state on reading b. Finally, for every b transition in M from q_i to q_j, there is a corresponding ϵ transition in M' from q_i' to q_j'. Finally, for all $q_i \in F$, we say let the corresponding states $q_i, q_i' \in F'$.
Now, suppose we have a string $w \in L$. If w contains no b's or no repeat b's, then \text{NOREPEATB}(w)$, which we define to be w with all repeat b's removed, has no b's and M' will behave identically to M and hence will accept $\text{NOREPEATB}(l)$. So, suppose w has at least one string of one or more repeated b's. Then M' will read $\text{NOREPEATB}(w)$ until it hits the first b, at which time it will enter a prime state. It will then undergo ϵ transitions for each prime state corresponding to M’s original behavior on w on reading the repeated b’s. Thus, M'’s behavior on $\text{NOREPEATB}(w)$ will mimic that of M on w, so M' will accept.

Finally, suppose we have some $w \notin \text{NOREPEATB}(L)$. Then we cannot repeat b’s in w to achieve a string in L. Thus, there can be no computation path in M' that leads to an accept state on reading w, since the only difference between M and M' is that M' allows ϵ transitions in place of transitions in the case of a repeated b that correspond exactly to M’s behavior.

Thus M' accept $\text{NOREPEATB}(L)$ and only this language, so that $\text{NOREPEATB}(L)$ is regular.