1 Overview

This week we will discuss Turing machines and the Church-Turing thesis.

1.1 Turing Machines

Formally, a Turing machine is a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, where

- Q is the set of states.
- Σ is the input alphabet.
- Γ is the tape alphabet. We need $\Sigma \subseteq \Gamma$ and we have a special blank symbol $\sqcup \in \Gamma - \Sigma$.
- $\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ is the transition function.
- $q_0, q_{accept}, q_{reject} \in Q$ are the start state, accept state, and reject state respectively.

A Turing machine configuration is a string $uqv \in \Gamma^*Q\Gamma^*$ that encodes (i) the state q of M, (ii) the tape contents uv, and (iii) the location of the head within the tape. Note that we ignore trailing blanks so $uqv\sqcup$ and uqv are considered equivalent configurations.

Configurations are updated as follows.

- $uq\sigma v \rightarrow u\sigma'q'v$ if $\delta(q, \sigma) = (q', \sigma', R)$.
- $u\tau q\sigma v \rightarrow uq'\tau\sigma'v$ if $\delta(q, \sigma) = (q', \sigma', L)$.
- $q\sigma v \rightarrow q'\sigma'v$ if $\delta(q, \sigma) = (q', \sigma', L)$.

A computation starts in the configuration q_0x, where x is the input. It accepts if it enters a configuration of the form $uq_{accept}v$. It rejects if it enters a configuration of the form $uq_{reject}v$. It is possible that M never accepts and never rejects; if this happens, we say that M does not halt.

We say that a language $L \subseteq \Sigma^*$ is recognized by a Turing machine M if M accepts every $x \in L$. If we also have that M rejects every $x \in \Sigma^* - L$, then we say that L is decided by M.
1.2 Church-Turing thesis

The Church-Turing thesis is the assertion that Turing machines capture our intuitive notion of computability. This is not a mathematical statement! We cannot prove it, but we have good reasons to believe it nonetheless. There are many equivalent models of computation. (e.g. General grammars (PS6), multitape TMs, recursive functions, λ-calculus.)

2 Exercises

Exercise 2.1. Construct a TM that decides the language $L = \{a^nb^m c^{n+m} : n, m \geq 0\}$.

Exercise 2.2. Show that the language

$L = \{(M,w) : M \text{ never moves its head left when running on } w\}$

is recognizable.

Exercise 2.3. Imagine a special Turing Machine with a 2-dimensional tape. So instead of the usual linear tape this TM has an infinite upper-right quadrant where the head starts at position $(0,0)$. Upon reading each symbol this 2D Tape TM can choose to move left, right, up, or down (but of course cannot move off the edge). The input string w will start along the bottom row of the 2D tape, from positions $(0,0)$ to $(n,0)$. Show that this 2D Tape TM is no more powerful than a standard TM by simulating a 2D Tape TM with a normal one.

Exercise 2.4. Show that we can assume that a TM always halts with an empty tape. That is, show how to convert a TM M into a TM M' with $L(M) = L(M')$ where the configuration of M' when it accepts or rejects is either q_{accept} or q_{reject} and not $uq_{\text{accept}}v$ or $uq_{\text{reject}}v$ with $uv \notin \{\square\}^\ast$.