
Harvard University
Computer Science 121

Quiz — October 28, 2008

You have 80 minutes to complete the quiz. Points total 80. No notes, books, or other aids are
allowed. You may use any result already proved in a lecture or on a problem set.

Σ = {a, b} unless otherwise specified.

PROBLEM 0 (2+2+2+2 points)

Which of the following strings are generated by the regular expression (abε)∗(a ∪ b ∪ ∅)ba?
(Answer YES or NO; no explanation needed.)

(A) ε (B) aba (C) ababba (D) abababa

(A) NO
(B) YES
(C) NO
(D) YES

PROBLEM 1 (8 points)

Let G be the context-free grammar given by the rules

S → aSb|Y
Y → bY |Y a|ε

Draw the state diagram of a PDA that recognizes L(G).

The given context-free grammar accepts the language L(G) = {anbmakbn|n, m, k ∈ N}. This
language can also be recognized by the following Pushdown Automaton:

PROBLEM 2 (4+4+4+4 points)



True or False? Write a sentence or two explaining your answer.
(A) Every language is countable.
(B) If L1 ∩ L2 is regular, then L1 and L2 are regular.
(C) If L is non-regular, then so is the complement of L.
(D) If M1 = (Q1,Σ, δ1, s1, F1) and M2 = (Q2,Σ, δ2, s2, F2) are DFAs such that Q1 = Q2, s1 = s2,
and F1 = F2, then L(M1) = L(M2).

(A) True. The strings in any language L can be enumerated by first enumerating the strings of
length 0 in L (if any), then the strings in L of length 1, then the strings in L of length 2, etc. (Many
people got this problem wrong. One common justification was that “we proved the existence of
uncountable sets in lecture.” That is true, but not all sets are languages. Languages are only sets of
strings. A second common answer was that the set of all (infinite) binary sequences is an example
of an uncountable language. This set is indeed uncountable, but it is not a language. Languages
only consist of strings, and strings are finite sequences of alphabet symbols by definition.)

(B) False. Let L1 = {anbn : n ≥ 0} and L2 = ∅. Then L1 ∩ L2 = ∅ is regular, but L1 is not.
(Note that the converse statement is true and amounts to the closure of regular languages under
intersection: if L1 and L2 are regular, then so is L1 ∩ L2.)

(C) True. Suppose for contradiction that L is non-regular, but L is regular. By closure of regular
languages under complement, the complement of L is regular. But the complement of L is simply
L. ⇒⇐

(D) False. By having different transition functions, the languages recognized can be very different
(even if everything else is the same). For example, consider the (two-state) DFAs M1,M2 with
Σ = {a}, Q1 = Q2 = {q, r}, s1, s2 = q, F1 = F2 = {r}, and define the two transition functions by
δ1(q, a) = q, δ1(r, a) = r and δ2(q, a) = r, δ2(r, a) = r. Then L(M1) = ∅ and L(M2) = {an : n ≥ 1}.

(TURN OVER!)



PROBLEM 3 (7+7+7 points)

For each of the following languages, determine whether it is regular and whether it is context-free.
Justify your answers.

(A) {an(bc)n : n ≥ 0}
(B) {a2n

: n ≥ 0}
(C) {ananan : n ≥ 0}

(A) soln1: Recall that both regular languages and context-free languages are closed under
homomorphisms. Apply the following homomorphism: φ(a) = a, φ(b) = b, φ(c) = ε. The language

becomes {anbn : n ≥ 0} which we know is non-regular, so the original language is non-regular.
Since we can apply the homomorphism φ(a) = a, φ(b) = bc to context-free language

{anbn : n ≥ 0} to obtain {an(bc)n : n ≥ 0}, the latter is also context-free.
soln2: Suppose the language were regular. The language then has some pumping length p.

Consider string w = ap(bc)p. By the pumping lemma, since |w| = 3p > p, we can rewrite w as
xyz, where y 6= ε and |xy| ≤ p, so xy must be a substring of ap. Let y = ak. Then xz = ap−k(bc)p.

Notice that xz 6∈ {an(bc)n : n ≥ 0} leading to a contradiction with the pumping lemma! Hence
the language must be non-regular.

To show that the language is context-free, consider the following grammar that generates the
language:

S → aSbc|ε

(B) soln1: Every regular language is also context-free, so it suffices to show that it is not
context-free to prove that it is neither.

Suppose {a2n
: n ≥ 0} is context-free. It must then have some pumping length p. Consider string

w = a2p
. By the pumping lemma, since |w| = 2p > p, we can rewrite w as uvxyz, where vy 6= ε

and |vxy| ≤ p. Let vy = ak. Since |vxy| ≤ p, then k ≤ p. By the pumping lemma,
uv2xy2z ∈ {a2n

: n ≥ 0}. Notice that
2p < |uv2xy2z| = |uvxyz|+ |vy| = |w|+ |vy| = 2p + k ≤ 2p + p. So:

2p < |uv2xy2z| ≤ 2p + p < 2p + 2p = 2p+1

So there does not exist n such that uv2xy2z = a2n
, so uv2xy2z 6∈ {a2n

: n ≥ 0}, a contradiction
with the pumping lemma! It thus follows that the language is neither context-free nor regular.
soln2: It was shown in lecture that {a2n

: n ≥ 0} is not regular. From the challenge problem in
Problem Set 4, every context-free language with a unary alphabet is also regular. Hence the

language cannot be context-free.

(C) Notice that the language {ananan : n ≥ 0} = {a3n : n ≥ 0} is regular, since it can be
generated by the regular expression R = (aaa)∗. Every regular language is also context-free, so

the language is both regular and context-free.

PROBLEM 4 (9+9 points)



(A) Outline a general procedure for converting a regular expression R into a regular expression R′

such that L(R′) is the complement of L(R). Be sure to state the type (DFA, RE, etc.) of each
intermediate object constructed in the process, and explain informally (in a sentence or two) how
each object is obtained from the previous one.

(B) Apply your algorithm (showing all steps) to the regular expression R = ε.

(A)

1. First convert the regular expression to an NFA using the construction in Sipser by gluing
together the various smaller regular expressions using epsilon transitions to do concatenation,
union, and star. (Several people suggested doing the “reverse” of the GNFA process, which
was neither described in Sipser or lecture, and thus required a more detailed explanation.
Several people simply said that if we have a regular expression, we have a regular language,
and that we can find the DFA for such a language. We were asking for an algorithm to
construct the D/NFA here.)

2. Next convert the NFA to a DFA using the subset construction.

3. Then swap the final and non-final states of the DFA to make a DFA accepting the complement
of L(R). Note that this only works for DFAs, so you can’t do this directly on the NFA.

4. Next turn the DFA into a GNFA and perform the GNFA to regular expression construction
in Sipser by “ripping” out states and fixing up the transitions.

(B)

1. Create an NFA for ε.

2. Turn the NFA into a DFA.

3. Swap final and non-final states.



4. Turn the DFA into a GNFA.

5. Rip out state q0.

6. Rip out state q1.

7. Get the final regular expression of (a ∪ b)(a ∪ b)∗.

PROBLEM 5 (9 points)

For any language L ⊆ Σ∗, define SUFFIX (L) = {v ∈ Σ∗|uv ∈ L for some string u ∈ Σ∗}. Show
that if L is regular, then so is SUFFIX (L). (Hint: construct an NFA for SUFFIX (L).)



Given a DFA M for L, we convert it to an NFA for SUFFIX (L) by adding a new start state, and
adding ε transitions from that start state to every state in M that is reachable from the original
start state. This will allow the NFA to guess where along a computation of the original DFA to

start, and then to accept the rest of the string.
Only adding transitions to reachable states means that we won’t accidentally introduce new

strings that weren’t suffixes of L, and jumping to all reachable states means that given any suffix
s of a string w in L, we can jump to the point in the computation of M on w where it was about

to start reading s, and finish the computation from there, thus recognizing the suffix.

PROBLEM 6 (Extra Credit: 2 points)

A queue is similar to a stack, except that pushing and popping happen at opposite ends. That is,
symbols are pushed onto the top of the queue, and symbols are read and popped off the bottom of
the queue. A QA is a nondeterministic automaton just like a PDA, but it has a queue instead of a
stack. Find a language that is recognized by a QA but not a PDA. (There is no need to provide a
formal definition of a QA.)

As we have seen, the language L = {w#w : w ∈ {a, b}∗} is not context-free (and hence not
recognized by any PDA). L is, however, recognized by the following QA Q: as Q reads input s, it

pushes the symbols of s onto the top of the queue until it encounters # (Q pushes # onto the
queue as well). As Q reads the remainder of s, it pops off the the symbol on the bottom of the

queue iff it matches the symbol of s currently read. Q accepts if the stack contains # after all of s
has been read. It turns out that QAs are equivalent in power to Turing Machines.


