
Midterm Review

October 10, 2011

Important Things

Here are some things you should make sure to study:

• Definition of DFA, NFA, Regular Expressions

• How to convert between DFAs, NFAs, and Regular Expressions

• Closure properties of regular languages

• Countability and Uncountability

• Pumping Lemma

• Definition of CFG

Practice Problems

1. Are the following true or false? Let L1 and L2 be arbitrary languages over an alphabet
Σ = {a, b}.

(a) If L1 is infinite, then L1 ◦ L2 is infinite
Solution: False. consider L1 = {a}∗ and L2 = ∅

(b) (L∗
1)

∗ = L∗
1

Solution: True.

(c) L∗
1 = (L1L1)

∗

Solution: False. Consider L1 = {a}.
(d) (L1 ◦ L2)

∗ = L∗
1 ◦ L∗

2

Solution: False. Consider L1 = {a} and L2 = ∅.
(e) If L1 ⊂ L2, then L∗

1 ⊂ L∗
2

Solution: True.

(f) If L1 is regular, then it is context-free.
Solution: True.

(g) If L1 is finite, then it is regular.
Solution: True.

(h) If L1 is non-regular, then L1 is non-regular.
Solution: True.

1

2. Draw a DFA that recognizes the following languages. Assume Σ = {a, b}

(a) {w | |w| = 5}
(b) All strings except the empty string

Solution: See attached images.

3. Draw an NFA the recognizes the language a∗b∗aba

4. Are the following languages regular or not?

(a) {x = y+z | x, y, z are binary integers, and x is the sum of y and z} (the alphabet
here is {0, 1,=,+}). Solution: Non-regular. We show it does not satisfy the
pumping lemma. Suppose the pumping length is p. Then consider the string
1p = 1p + 0p. Then xy has to just consist of 1’s, and so if we pump down the left
hand side of the equality will be less than the right hand side.

(b) {w | w is the binary representation of a number greater than 3} Solution: Reg-
ular. Consider the regular expression 0∗1(0 ∪ 1)(0 ∪ 1)(0 ∪ 1)∗.

5. Give a context free grammar for the following languages:

(a) The set of strings over {a, b} with more a’s than b’s.
Solution:
S → TaT
T → ε | TaTbT | TbTaT | Ta | aT

(b) {aibjck | i = j or j = k and i, j, k ≥ 0}. Solution:
S → C | D
C → EF
E → ε | aEb
F → ε | Fc
D → GH
G→ ε | Ga
H → ε | bHc

6. Sometimes it is easier to prove properties of regular languages by basing the argument
on DFAs. Other times it is easier to work with NFAs or Regular Expressions. Each
of the following are easier to prove using one of these three representations (in the
humble opinion of one of your TFs). Prove the following statements.

(a) If L1 is a regular language, then L1 is regular.
Solution: Take the DFA for L1 and swap the accept states and the non-accept
states. It’s not at all clear how to complement a R.E. And for an NFA, we have
to worry about an accept state being connected by an epsilon transition to a
non-accept state.

(b) For all languages L, define DROPOUT (L) = {w | w is some string from L with
exactly one character deleted }. Prove that if L is regular, then DROPOUT (L)
is regular.
Solution: Proceed by structural induction on the regular expression for R. We
will construct a function f that given a regular expression for a language, returns

2

the DROPOUT form of that language. For the base cases we have f(ε) = ∅,
f(σ) = ε, and f(∅) = ∅.
Then we have:
f(R1 ◦R2) = f(R1) ◦R2 ∪R1 ◦ f(R2).
f(R1 ∪R2) = f(R1) ∪ f(R2)
f(R∗

1) = R∗
1f(R1)R

∗
1

The last one is subtle. Suppose x ∈ f(R1∗) then we started with some string of
the form w1 · · ·wn for n ≥ 1 where each wi ∈ R1 and then deleted a character.
(Why do we put on the constraint n ≥ 1 here? Because if we had started with
n = 0, we wouldn’t have been able to delete a character). Now then, when
we delete this character, it has to come from one of the wi. That wi with that
character removed is in f(R1), and then the remaining things to its left and right
are just in R∗

1

3

