
Harvard University
Computer Science 121

Midterm — October 23, 2012

This is a closed-book examination. You may use any result from lecture, Sipser, problem sets,
or section, as long as you quote it clearly. The alphabet is Σ = {a, b} except where otherwise
stated. You have 80 minutes. The problems total 75 points. Use pen and write your name on all
bluebooks you use. Good luck!

PROBLEM 1 (1+1+1+1+1 points)

For each of the following, say whether it is a string, language, or neither. No justification necessary.
(A) Σ∗ (B) ε (C) ∅ (D) {∅} (E) {ε}
(A) Language (B) String (C) Language (D) Neither (E) Language

PROBLEM 2 (3+4+3+5 points)

Consider the following NFA N :

q0

q1 q2

q3 q4

a

b

a

b

a, b

a, b

(A) Which of the following strings are accepted by N? bb, abaa, abb.
(B) Write out the formal 5-tuple for N .
(C) Describe in English the language L(N).
(D) Convert the NFA to a DFA using the Subset Construction. (You may simply draw the state
diagram of the DFA, omitting unreachable states.)

(A) Yes, Yes, No.
(B) ({q0, q1, q2, q3, q4}, {a, b}, δ, q0, {q2, q4}), with δ given by

a b ε

q0 {q1} {q3} ∅
q1 {q1, q2} {q1} ∅
q2 ∅ ∅ ∅
q3 {q3} {q3, q4} ∅
q4 ∅ ∅ ∅

(C) All strings over Σ = {a, b} of length at least two where the first and last characters are the
same.



(D)

{q0}

{q1} {q1, q2}

{q3} {q3, q4}

a

b

a

b

b

a

b a

a b

PROBLEM 3 (5 points)

For a string w ∈ {a, b}∗, define w to be the string where all a’s are replaced with b’s and vice-versa.
For example, aabab = bbaba. Give a context-free grammar for the language {w ∈ {a, b}∗ : wR = w}.

Solution: Denote w as w = σ1 · σ2 · · ·σn, where σi ∈ Σ = {a, b}. Then wR = w if and only
if σi = σn−i+1 for every i. We can design a CFG as follows. G = ({S}, {a, b}, {S → aSb, S →
bSa, S → ε}, S). The main idea is that, in each step, if G generates σ in the first position, then it
must generate σ in the last position.

PROBLEM 4 (4+4+4+4 points)

TRUE or FALSE? Justify your answers in one or two sentences.
(A) If L1 is regular and L2 ⊆ L1, then L2 is regular
(B) bababbba ∈ L(((aba ∪ ba)∗b)∗)
(C) There exists a language L such that L∗ is uncountable
(D) The grammar S → SS|a is ambiguous

(A) false: Let L1 = Σ∗ and L2 = {anbn : n ∈ N}. We proved in class that L2 is non-regular, and
L2 ⊆ L1, so the answer must be false.

(B) false: We see that because the regular expression is of the form ((X)∗b)∗, where X = aba∪ba,
we know that any string in L is either ε or it ends in a b.

(C) false: Every language is countable (shown in class) and L∗ is still a language.



(D) true: The string aaa has two different parse trees:

S S

/ \ / \

S S S S

| / \ / \ |

| S S S S |

| | | | | |

a a a a a a

PROBLEM 5 (6+6+6+6 points)

For each of the following languages, say whether it is regular, context-free, both, or neither. Briefly
justify your answers.
(A) L = {aibj : i− j = 2012}
(B) L = {aibj : i+ j = 2012}
(C) L = {anbnan : n ≥ 0}
(D) L = {w : w contains both obama and romney as substrings}, over alphabet Σ = {a, b, . . . , z}

(A) context-free, not regular. This is very similar to {anbn : n ≥ 0}. In fact, it is {an+2012bn :
n ≥ 0}. We can use this to show that it is nonregular: Consider L1 = {b2012} and L2 = {anbn :
n < 2012}. Both L1 and L2 are finite and hence regular. But L ◦ L1 ∪ L2 = {anbn : n ≥ 0}, which
is a known non-regular language. Because the regular languages are closed under concatenation
and union, then it must be the case that L is not regular. L is, however, context free. We can
devise a grammar S → a2012T, T → aTb, T → ε to produce L. Because L can be generated by a
context-free grammar, L is context-free.
(B) both. All strings in this language are 2012 characters long. Because the language has a largest
string, that means that the language is finite and hence regular. And if it is regular, then it is also
context-free.
(C) neither. It suffices to show that L is not context-free, as this implies that it is also nonregular.
We can prove that L is not context-free by an application of the CF Pumping Lemma, similar to
the proof that {anbncn} is not context-free from lecture. Let p be the CF pumping length for L, and
consider the string s = apbpap. By the CF pumping lemma, s can be partitioned into s = uvxyz
where v or y is nonempty and uvixyiz ∈ L for all i ∈ N . If either v or y contain two different
symbols, then uv2xy2z is not of the form a∗b∗a∗, and hence is not in L. If v and y each contain only
a single symbol, then uv2xy2z will not have an equal number of symbols in all three segments (the
initial a’s, the b’s, and the final a’s), as we will be pumping only one or two of the three segments.
This is a contradiction, so L cannot be CF.
(D) both. L is regular because it is the intersection of the two regular languages L(Σ∗obamaΣ∗)
and L(Σ∗romneyΣ∗), and the class of regular languages is closed under intersection. L is context
free because every regular language is context free.

PROBLEM 6 (10 points)

For a string w ∈ {a, b}∗, define odd(w) to be the string consisting of the symbols in odd-numbered
positions in w. That is, if w = w1w2w3 · · ·wn, then odd(w) = w1w3w5 · · ·wm, where m is either n
or n− 1 depending on whether n is odd or even.



Show that if L is regular, then so is {w ∈ {a, b}∗ : odd(w) ∈ L}.
Solution: Suppose L is regular; then there is a DFA M recognizing L. We construct a new

DFA M ′ as follows: For every old transition δ(q1, σ) = q2, we create a new state q′, delete the old
transition, and create the transitions δ(q1, σ) = q′ and δ(q′, σ′) = q2 for every σ′ ∈ Σ. For example:

q1 q2
a

q1 q2
a

q'
a,b

Also, if q2 is an accept state, we make q′ an accept state. This makes sure that we accept both
odd and even length strings.

Now we justify that this DFA M ′ recognizes L′ = {w : odd(w) ∈ L}. First, if odd(w) ∈ L,
then there was an accepting path in M on every odd letter in w, so M ′ must have an accepting
path on w (since the odd letters go through states corresponding to M , and the even letters can be
anything). Second, if w is accepted by M ′, then the odd letters of w must have followed transitions
on the states corresponding to M , so odd(w) would be accepted by M , so odd(w) ∈ L and thus
w ∈ L′.

Since M ′ is a DFA recognizing L′, L′ must be regular.
(Note: many students attempted to show that {odd(w) : w ∈ L} is regular. Unfortunately, while

this is still true, it is trickier to do.)

PROBLEM 7 (CHALLENGE! 1 points)

Prove that if R is a regular expression, then L(R) satisfies the pumping lemma with a pumping
length equal to |R|+1, where |R| is the size (or length) of R. (You can omit the |xy| ≤ p condition.)

Solution: Intuitively, if a regular expression R matches a string w with |w| > |R|, then a
Kleene star must have been used to do the matching. We can simply let y be the (nonempty) part
of w that matches the Kleene star. Then yn still matches the Kleene star.

Formally, we prove this by structural induction on R.
Base case: If R = ∅, R = ε, or R = σ for some σ ∈ Σ, then, since L(R) contains no strings of

length at least |R|+ 1, the result is vacuously true.
Induction step: Let R be a regular expression with |R| > 1. Suppose the result holds for regular

expressions smaller than R. By the definition of regular expressions, we can write R in one of the
following ways. In each case, R1 and R2 are regular expressions that are smaller than R and, using
the induction hypothesis, we can show that the result holds for R.

R = R1 ∪R2: Let w ∈ L(R) with |w| > |R|. Then either w ∈ L(R1) and |w| > |R1| or w ∈ L(R2) and
|w| > |R2|. In the first case, we can write w = xyz with y 6= ε and xynz ∈ L(R1) ⊂ L(R) for
all n ≥ 0. The other case is similar. Either way, the result holds for R.



R = R1 ·R2: Let w ∈ L(R) with |w| > |R|. Then we can write w = w1w2 with w1 ∈ L(R1) and w2 ∈ L(R2).
Either |w1| > |R1| or |w2| > |R2|. In the first case, let w1 = xyz with y 6= ε and xynz ∈ L(R1)
for all n ≥ 0; then w = xy(zw2) and xynzw2 ∈ L(R1) · L(R2) = L(R) for all n ≥ 0. The
second case is similar and, either way, the result holds for R.

R = R∗1: If w ∈ L(R) and w 6= ε, then we can write w = w1w2 · · ·wk where wi ∈ L(R1) − {ε} for all
i. Set x = ε, y = w1, and z = w2 · · ·wk. Since y ∈ L(R1) − {ε}, yn ∈ L(R1∗) for all n ≥ 0.
Thus xynz = wn

1w2 · · ·wk ∈ L(R∗1) = L(R) and, hence, the result holds for R.

THE END
REMEMBER TO PUT YOUR NAME ON YOUR WORK.


