Harvard University
 Computer Science 121 Midterm - October 23, 2012

This is a closed-book examination. You may use any result from lecture, Sipser, problem sets, or section, as long as you quote it clearly. The alphabet is $\Sigma=\{a, b\}$ except where otherwise stated. You have 80 minutes. The problems total 75 points. Use pen and write your name on all bluebooks you use. Good luck!

PROBLEM $1(1+1+1+1+1$ points)
For each of the following, say whether it is a string, language, or neither. No justification necessary.
(A) Σ^{*}
(B) ε
(C) \emptyset
(D) $\{\emptyset\}$
(E) $\{\varepsilon\}$
(A) Language
(B) String
(C) Language
(D) Neither
(E) Language

PROBLEM $2(3+4+3+5$ points)
Consider the following NFA N :

(A) Which of the following strings are accepted by N ? $b b, a b a a, a b b$.
(B) Write out the formal 5 -tuple for N.
(C) Describe in English the language $L(N)$.
(D) Convert the NFA to a DFA using the Subset Construction. (You may simply draw the state diagram of the DFA, omitting unreachable states.)
(A) Yes, Yes, No.
(B) $\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\},\{a, b\}, \delta, q_{0},\left\{q_{2}, q_{4}\right\}\right)$, with δ given by

	a	b	ε
q_{0}	$\left\{q_{1}\right\}$	$\left\{q_{3}\right\}$	\emptyset
q_{1}	$\left\{q_{1}, q_{2}\right\}$	$\left\{q_{1}\right\}$	\emptyset
q_{2}	\emptyset	\emptyset	\emptyset
q_{3}	$\left\{q_{3}\right\}$	$\left\{q_{3}, q_{4}\right\}$	\emptyset
q_{4}	\emptyset	\emptyset	\emptyset

(C) All strings over $\Sigma=\{a, b\}$ of length at least two where the first and last characters are the same.
(D)

PROBLEM 3 (5 points)
For a string $w \in\{a, b\}^{*}$, define \bar{w} to be the string where all a 's are replaced with b 's and vice-versa. For example, $\overline{a a b a b}=b b a b a$. Give a context-free grammar for the language $\left\{w \in\{a, b\}^{*}: w^{R}=\bar{w}\right\}$.

Solution: Denote w as $w=\sigma_{1} \cdot \sigma_{2} \cdots \sigma_{n}$, where $\sigma_{i} \in \Sigma=\{a, b\}$. Then $w^{R}=\bar{w}$ if and only if $\sigma_{i}=\overline{\sigma_{n-i+1}}$ for every i. We can design a CFG as follows. $G=(\{S\},\{a, b\},\{S \rightarrow a S b, S \rightarrow$ $b S a, S \rightarrow \epsilon\}, S$). The main idea is that, in each step, if G generates σ in the first position, then it must generate $\bar{\sigma}$ in the last position.

PROBLEM $4(4+4+4+4$ points)

TRUE or FALSE? Justify your answers in one or two sentences.
(A) If L_{1} is regular and $L_{2} \subseteq L_{1}$, then L_{2} is regular
(B) $b a b a b b b a \in L\left(\left((a b a \cup b a)^{*} b\right)^{*}\right)$
(C) There exists a language L such that L^{*} is uncountable
(D) The grammar $S \rightarrow S S \mid a$ is ambiguous
(A) FALSE: Let $L_{1}=\Sigma^{*}$ and $L_{2}=\left\{a^{n} b^{n}: n \in \mathbb{N}\right\}$. We proved in class that L_{2} is non-regular, and $L_{2} \subseteq L_{1}$, so the answer must be FALSE.
(B) FALSE: We see that because the regular expression is of the form $\left((X)^{*} b\right)^{*}$, where $X=a b a \cup b a$, we know that any string in L is either ε or it ends in a b.
(C) FALSE: Every language is countable (shown in class) and L^{*} is still a language.
(D) true: The string aaa has two different parse trees:

PROBLEM 5 ($6+6+6+6$ points)
For each of the following languages, say whether it is regular, context-free, both, or neither. Briefly justify your answers.
(A) $L=\left\{a^{i} b^{j}: i-j=2012\right\}$
(B) $L=\left\{a^{i} b^{j}: i+j=2012\right\}$
(C) $L=\left\{a^{n} b^{n} a^{n}: n \geq 0\right\}$
(D) $L=\{w: w$ contains both obama and romney as substrings $\}$, over alphabet $\Sigma=\{a, b, \ldots, z\}$
(A) Context-free, not regular. This is very similar to $\left\{a^{n} b^{n}: n \geq 0\right\}$. In fact, it is $\left\{a^{n+2012} b^{n}\right.$: $n \geq 0\}$. We can use this to show that it is nonregular: Consider $L_{1}=\left\{b^{2012}\right\}$ and $L_{2}=\left\{a^{n} b^{n}\right.$: $n<2012\}$. Both L_{1} and L_{2} are finite and hence regular. But $L \circ L_{1} \cup L_{2}=\left\{a^{n} b^{n}: n \geq 0\right\}$, which is a known non-regular language. Because the regular languages are closed under concatenation and union, then it must be the case that L is not regular. L is, however, context free. We can devise a grammar $S \rightarrow a^{2012} T, T \rightarrow a T b, T \rightarrow \varepsilon$ to produce L. Because L can be generated by a context-free grammar, L is context-free.
(B) вотн. All strings in this language are 2012 characters long. Because the language has a largest string, that means that the language is finite and hence regular. And if it is regular, then it is also context-free.
(C) Neither. It suffices to show that L is not context-free, as this implies that it is also nonregular. We can prove that L is not context-free by an application of the CF Pumping Lemma, similar to the proof that $\left\{a^{n} b^{n} c^{n}\right\}$ is not context-free from lecture. Let p be the CF pumping length for L, and consider the string $s=a^{p} b^{p} a^{p}$. By the CF pumping lemma, s can be partitioned into $s=u v x y z$ where v or y is nonempty and $u v^{i} x y^{i} z \in L$ for all $i \in \mathcal{N}$. If either v or y contain two different symbols, then $u v^{2} x y^{2} z$ is not of the form $a^{*} b^{*} a^{*}$, and hence is not in L. If v and y each contain only a single symbol, then $u v^{2} x y^{2} z$ will not have an equal number of symbols in all three segments (the initial a 's, the b 's, and the final a 's), as we will be pumping only one or two of the three segments. This is a contradiction, so L cannot be CF.
(D) вотн. L is regular because it is the intersection of the two regular languages $L\left(\Sigma^{*}\right.$ obama $\left.\Sigma^{*}\right)$ and $L\left(\Sigma^{*}\right.$ romney $\left.\Sigma^{*}\right)$, and the class of regular languages is closed under intersection. L is context free because every regular language is context free.

PROBLEM 6 (10 points)

For a string $w \in\{a, b\}^{*}$, define odd (w) to be the string consisting of the symbols in odd-numbered positions in w. That is, if $w=w_{1} w_{2} w_{3} \cdots w_{n}$, then $\operatorname{odd}(w)=w_{1} w_{3} w_{5} \cdots w_{m}$, where m is either n or $n-1$ depending on whether n is odd or even.

Show that if L is regular, then so is $\left\{w \in\{a, b\}^{*}: \operatorname{odd}(w) \in L\right\}$.
Solution: Suppose L is regular; then there is a DFA M recognizing L. We construct a new DFA M^{\prime} as follows: For every old transition $\delta\left(q_{1}, \sigma\right)=q_{2}$, we create a new state q^{\prime}, delete the old transition, and create the transitions $\delta\left(q_{1}, \sigma\right)=q^{\prime}$ and $\delta\left(q^{\prime}, \sigma^{\prime}\right)=q_{2}$ for every $\sigma^{\prime} \in \Sigma$. For example:

Also, if q_{2} is an accept state, we make q^{\prime} an accept state. This makes sure that we accept both odd and even length strings.

Now we justify that this DFA M^{\prime} recognizes $L^{\prime}=\{w: \operatorname{odd}(w) \in L\}$. First, if $\operatorname{odd}(w) \in L$, then there was an accepting path in M on every odd letter in w, so M^{\prime} must have an accepting path on w (since the odd letters go through states corresponding to M, and the even letters can be anything). Second, if w is accepted by M^{\prime}, then the odd letters of w must have followed transitions on the states corresponding to M, so $\operatorname{odd}(w)$ would be accepted by M, so $\operatorname{odd}(w) \in L$ and thus $w \in L^{\prime}$.

Since M^{\prime} is a DFA recognizing L^{\prime}, L^{\prime} must be regular.
(Note: many students attempted to show that $\{o d d(w): w \in L\}$ is regular. Unfortunately, while this is still true, it is trickier to do.)

PROBLEM 7 (CHALLENGE! 1 points)

Prove that if R is a regular expression, then $L(R)$ satisfies the pumping lemma with a pumping length equal to $|R|+1$, where $|R|$ is the size (or length) of R. (You can omit the $|x y| \leq p$ condition.)

Solution: Intuitively, if a regular expression R matches a string w with $|w|>|R|$, then a Kleene star must have been used to do the matching. We can simply let y be the (nonempty) part of w that matches the Kleene star. Then y^{n} still matches the Kleene star.

Formally, we prove this by structural induction on R.
Base case: If $R=\emptyset, R=\varepsilon$, or $R=\sigma$ for some $\sigma \in \Sigma$, then, since $L(R)$ contains no strings of length at least $|R|+1$, the result is vacuously true.

Induction step: Let R be a regular expression with $|R|>1$. Suppose the result holds for regular expressions smaller than R. By the definition of regular expressions, we can write R in one of the following ways. In each case, R_{1} and R_{2} are regular expressions that are smaller than R and, using the induction hypothesis, we can show that the result holds for R.
$R=R_{1} \cup R_{2}$: Let $w \in L(R)$ with $|w|>|R|$. Then either $w \in L\left(R_{1}\right)$ and $|w|>\left|R_{1}\right|$ or $w \in L\left(R_{2}\right)$ and $|w|>\left|R_{2}\right|$. In the first case, we can write $w=x y z$ with $y \neq \varepsilon$ and $x y^{n} z \in L\left(R_{1}\right) \subset L(R)$ for all $n \geq 0$. The other case is similar. Either way, the result holds for R.
$R=R_{1} \cdot R_{2}$: Let $w \in L(R)$ with $|w|>|R|$. Then we can write $w=w_{1} w_{2}$ with $w_{1} \in L\left(R_{1}\right)$ and $w_{2} \in L\left(R_{2}\right)$. Either $\left|w_{1}\right|>\left|R_{1}\right|$ or $\left|w_{2}\right|>\left|R_{2}\right|$. In the first case, let $w_{1}=x y z$ with $y \neq \varepsilon$ and $x y^{n} z \in L\left(R_{1}\right)$ for all $n \geq 0$; then $w=x y\left(z w_{2}\right)$ and $x y^{n} z w_{2} \in L\left(R_{1}\right) \cdot L\left(R_{2}\right)=L(R)$ for all $n \geq 0$. The second case is similar and, either way, the result holds for R.
$R=R_{1}^{*}$: If $w \in L(R)$ and $w \neq \varepsilon$, then we can write $w=w_{1} w_{2} \cdots w_{k}$ where $w_{i} \in L\left(R_{1}\right)-\{\varepsilon\}$ for all i. Set $x=\varepsilon, y=w_{1}$, and $z=w_{2} \cdots w_{k}$. Since $y \in L\left(R_{1}\right)-\{\varepsilon\}, y^{n} \in L\left(R_{1} *\right)$ for all $n \geq 0$. Thus $x y^{n} z=w_{1}^{n} w_{2} \cdots w_{k} \in L\left(R_{1}^{*}\right)=L(R)$ and, hence, the result holds for R.

