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Harvard University
Computer Science 121 — Final Exam, Friday, December 13, 2013

This is a closed-book examination. You may use any result from lecture, Sipser, or the problem
sets, as long as you quote it clearly. The alphabet is Σ = {a, b} except where otherwise stated.

You have 180 minutes. The problems total to 180 points. Write your name above and on all
bluebooks you use. Do the first problem on this page and turn it in along with your blue books.
Good luck!

PROBLEM 1 (19 points)

DO THIS PROBLEM ON THIS PAGE!
Complete the following table with YES, NO, or ?? (CURRENTLY UNKNOWN). No explanations

needed. M stands for a Turing machine, G1 and G2 are context-free grammars, and Σ = {a, b}.

Language: regular CF recursive r.e. co-r.e. P NP co-NP
{anb2na3n : n ≥ 0} NO NO YES YES YES YES YES YES

{an : n = 2k for some k ≥ 0} NO NO YES YES YES YES YES YES
3-SAT (the complement of 3-SAT) NO NO YES YES YES ?? ?? YES

{〈M〉 : M accepts abab} NO NO NO YES NO NO NO NO
{〈G1, G2〉 : L(G1) ∩ L(G2) = ∅} NO NO NO NO YES NO NO NO

PROBLEM 2 (10 points)

Draw a DFA that accepts a string if and only if every occurrence of a is immediately followed by
at least two consecutive b’s.

PROBLEM 3 (32 points)

(a) Prove that any n-state DFA that accepts at least one string accepts a string of length < n.

(b) Prove that any n-state NFA that accepts at least one string accepts a string of length < 2n.

(c) Prove that the set of Turing machines that accept at least one string is recognizable (r.e.).

(d) Prove that the set of Turing machines that accept at least one string is undecidable.

(a) Solution: Let M be an n-state DFA. Suppose that the shortest string accepted by M was of
length ≥ n. Then on the computational path followed by M on input w some state would be
repeated. Excising the segment between the state repetitions would produce a shorter string
accepted by M , contradicting the minimality hypothesis.

(b) Solution: Perform the subset construction on an n-state NFA, obtaining a 2n-state DFA, and
appeal to the previous result.



(c) Solution: A nondeterministic recognizer for this set takes the code of a TM and checks if it
accepts a non-deterministically chosen string in Σ∗. Since the languages recognized by NDTMs
are exactly the r.e. sets, this suffices. Alternatively, this language can be enumerated by trying
all TMs on all possible inputs for all possible number of steps and dovetailing.

(d) Solution: This holds by Rice’s theorem, since the class of nonempty r.e. sets is a nonempty
proper subset of the class of all r.e. sets.

PROBLEM 4 (18 points)

Write regular expressions for these languages or explain why it can’t be done.

(a) All strings of the form aibj where i is a multiple of 3 and j is a multiple of 5

(b) All strings without consecutive b’s.

(a) (aaa)∗(bbbbb)∗

(b) a∗(baa∗)∗(b ∪ ε)

PLEASE TURN OVER

PROBLEM 5 (21 points)

Which of the following are necessarily true for any languages A and B? True/False only, no
explanations needed.

(a) If A is cofinite then A is regular.

(b) If A is regular then A has countably many regular subsets.

(c) If A is not recursive then A has countably many non-recursive subsets.

(d) (A ∪B)−B = A

(e) A∗ is nonempty.

(f) A∗ is infinite.

(g) (A∗)∗ = A∗

Solutions

(a) True

(b) True

(c) False

(d) False

(e) True



(f) False

(g) True

PROBLEM 6 (20 points)

(a) Write a context-free grammar that generates all regular expressions over {a, b}. (It’s OK if it
generates redundant parentheses.)

(b) For any language L, let S(L) be the language {xyxR : y ∈ L, x ∈ Σ∗}. Show that the class of
context-free languages is closed under S.

(c) Show that the class of regular languages is not closed under S.

(d) Find a regular language such that S(L) is regular.

Solutions

(a) You can be pretty generous with where they stick in extra parentheses:

S → ε | a | b | (S) | (S ◦ S) | (S∗) | (S ∪ S) | ∅

(b) Given a context-free grammar G, let’s show that S(L(G)) is context-free. Let SG be the start
state of the grammar G. Then a grammar that generates S(L(G)) is:

S → aSa | bSb | SG

SG → . . .

In xyxR, x, xR can be generated by the aSa, aBa rules. The ε case is also handled when S
generates only SG.

(c) Let L be the regular language {ε}. In xyxR, it must be the case that y = ε, in which case
{xxR, x ∈ Σ∗} is the language of even palindromes, which we know not to be regular.

(d) Either L = ∅ or L = Σ∗ works.

PROBLEM 7 (30 points)

(a) Define NP-complete.

(b) Draw a diagram illustrating the likely relations between P, NP, co-NP, and the NP-complete,
recursive, r.e., and co-r.e. sets on the hypothesis that P6=NP.

(c) Can an NP-complete set be polynomial-time reducible to a proper subset of itself? Explain.

Solutions

(a) A language L is NP-complete if it is in NP and for any L′ ∈ NP, L′ ≤p L.



(b)
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(c) Yes. For example, 3SAT is NP-complete, so SAT reduces to it, and of course 3SAT ⊆ SAT.

PROBLEM 8 (30 points)

(a) Let SatFive be the set of Boolean formulas that are satisfied by a truth-assignment in which
at most 5 of the Boolean variables are true. Explain why SatFive ∈ P.

(b) Explain why, if P = NP, it would be possible not only to determine in polynomial time whether
a formula is satisfiable but, if so, to find a satisfying truth-assignment.

(c) Let Independent Set be the set of all 〈G, k〉 for which undirected graph G has a set S
of k vertices such that no pair of vertices in S is connected by an edge in G. Prove that
Independent Set is NP-complete. (Hint: Reduce from Clique.)

(a) Solution: To decide SatFive in polynomial time, one can just search through the set of
satisfying assignments in which at most 5 of the Boolean variables are true, since there are
only
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) such assignments, which is quintic in n.

(b) Solution: If P = NP, there is a decider M for Sat that runs in less than p(n)-time
for some polynomial p. Suppose ϕ(v1, . . . , vn) is a satisfiable formula and a1, . . . , ak is
an assignment such that ϕ(a1, . . . , ak, vk+1, . . . , vn) has a satisfying assignment. Then by
running M on ϕ(a1, . . . , ak, T, vk+2, . . . , vn) and ϕ(a1, . . . , ak, F, vk+2, . . . , vn), we find in
less that 2p(|ϕ|)-time a value ak+1 ∈ {T, F} such that ϕ(a1, . . . , ak, ak+1, vk+2, . . . , vn) has
a satisfying assingment. Therefore in O(np(|ϕ|))-time one can find a satisfying assignment
to ϕ(v1, . . . , vn).

(c) Solution: G has a clique of size k if only if the complement G of G has an independent
set of size k. Hence the map 〈G, k〉 7→ 〈G, k〉 is a polynomial reduction from Clique to
Independent Set and vice versa. It follows that Clique ≡p Independent Set and
hence Independent Set is NP-complete.



THE END


