
Harvard CS 121 and CSCI E-121
Lecture 1: Introduction and Overview

Harry Lewis

September 3, 2013

Harvard CS 121 & CSCI E-121 September 3, 2013

Introduction to the Theory of Computation

Computer Science 121 and CSCI E-121

Objective:

Make a theory out of the idea of computation.
11/02/2006 06:02 PMturing.jpg 170!201 pixels

Page 1 of 1http://www.galha.org/image/turing.jpg

1

Harvard CS 121 & CSCI E-121 September 3, 2013

What is “computation”?

• Paper + Pencil Arithmetic

121
+ 99

220

• Abacus

• Calculator w/moving parts (Babbage wheels, Mark I)

• Ruler & compass geometry constructions

• Digital Computers

2

Harvard CS 121 & CSCI E-121 September 3, 2013

Further computing devices

• Programs in C, Java.

• The Internet and other distributed systems.

• Cells/DNA?

• The human brain?

• Quantum computers?

For us computation will be

Processing information by unlimited application
of a finite set of operations or rules

3

Harvard CS 121 & CSCI E-121 September 3, 2013

What do we want in a “theory”?

4

Harvard CS 121 & CSCI E-121 September 3, 2013

What we would like to get past

5

Harvard CS 121 & CSCI E-121 September 3, 2013

What we would like to get past

• “This must be hard because I can’t figure out how do it”

6

Harvard CS 121 & CSCI E-121 September 3, 2013

What we would like to get past

• “This must be hard because I can’t figure out how do it”

• “This must be hard because I can’t figure out how do it and
neither can anybody else, including a lot of really smart people”

7

Harvard CS 121 & CSCI E-121 September 3, 2013

What we would like to get past

• “This must be hard because I can’t figure out how do it”

• “This must be hard because I can’t figure out how do it and
neither can anybody else, including a lot of really smart people”

• “This method seems to get the right answer on every case I’ve
tried”

8

Harvard CS 121 & CSCI E-121 September 3, 2013

What we would like to get past

• “This must be hard because I can’t figure out how do it”

• “This must be hard because I can’t figure out how do it and
neither can anybody else, including a lot of really smart people”

• “This method seems to get the right answer on every case I’ve
tried”

• “It’s never crashed while I was testing it so let’s ship it”
9

Harvard CS 121 & CSCI E-121 September 3, 2013

What do we want in a “theory”?

• Precision

• Mathematical, formal.

• Can prove theorems about computation,
both positive (what can be computed)
and negative (what cannot be computed).

• Generality

• Technology-independent, applies to the future as well as the
present

• Abstraction: ignores inessential details (though it may pay to
restore them later)

10

Harvard CS 121 & CSCI E-121 September 3, 2013

“Inessential” details

• Simple models are easier to reason about

• Once you have some model, it may pay to restore detail
previously ignored

• Example: The UPS delivery truck

• Example: Boarding an airplane

11

Harvard CS 121 & CSCI E-121 September 3, 2013

An automaton is an abstraction

A machine reading symbols from a tape

A system receiving discrete impulses over time

A chip
12

Harvard CS 121 & CSCI E-121 September 3, 2013

Representing “Information”

• Alphabet

Ex: a, b, c, . . . , z.

• Strings: finite concatenation of alphabet symbols, order
matters

Ex: qaz, abbab

ε = empty string (length 0; sometimes e)

• Inputs (& outputs) of computations are strings.

⇒ we focus on discrete computations

13

Harvard CS 121 & CSCI E-121 September 3, 2013

Computational Problems (i.e. Tasks)

A single question that has infinitely many different instances

• PARITY : given a string x, does it have an even number of a’s?

• MAJORITY : given a string x, does it have more a’s than b’s?

Problems are defined extensionally: a problem is

• the set of all instances of the question to which the answer is
positive

• the set of all 〈question, answer〉 pairs

14

Harvard CS 121 & CSCI E-121 September 3, 2013

Examples of computational problems on numbers

• PRIMALITY : given a number x, is x prime?

• ADDITION: given two numbers x, y, compute x + y.

• A numerical ”problem” is a set of binary or decimal numerals

Examples of computational problems about computer
programs

• C SYNTAX: given a string of ASCII symbols, does it follow the
syntax rules for the C programming language?

• HALTING PROBLEM: given a computer program (say in C),
can it ever get stuck in an infinite loop?

15

Harvard CS 121 & CSCI E-121 September 3, 2013

Computational problems from pure and applied
mathematics

• DIOPHANTINE EQUATIONS: Given a polynomial equation
(e.g. x2 + 3xyz − 44z3 = 0), does it have an integer solution?

• TRAVELLING SALESMAN PROBLEM: Given a set of ‘cities’
in the plane, what is the fastest way to visit them all?

• GRAPH 2-COLORING (3-COLORING): Given a set of people,
can they be partitioned into 2 groups so that every pair of
people in each group gets along? (3 groups?)

16

Harvard CS 121 & CSCI E-121 September 3, 2013

More examples of computational problems

• REGISTER ALLOCATION

• MULTIPROCESSOR SCHEDULING

• PROTEIN FOLDING

• DECODING ERROR-CORRECTING CODES

• NEURON TRAINING

• AUCTION WINNER

• MIN-ENERGY CONFIGURATION OF A GAS

• ...

17

Harvard CS 121 & CSCI E-121 September 3, 2013

The (Mathematical) Idea of a Language

• A language: any set of strings.

• “Solving a yes/no computational problem”
⇔ “Deciding if a string is in a given language”

18

Harvard CS 121 & CSCI E-121 September 3, 2013

Examples of Languages

• All words in the American Heritage Dictionary

{a, aah, aardvark, . . . , zyzzva}

Mathematically simple, because it’s finite!

• All strings with an even number of a’s.

{ε, b, bb, aa, baa, aba, baa, . . .}

Note: “ε” denotes the string of length 0 – the empty string

Infinite – but simple membership rule

• All syntactically correct C programs

(counting space and newline as characters)

19

Harvard CS 121 & CSCI E-121 September 3, 2013

Computational Models

What is a computer? First try: a mathematical automaton.

a a r d v . . .

Finite
Control

Yes

No

We don’t care how the control is implemented – only that it
have a finite number of states and change states based on
fixed rules

20

Harvard CS 121 & CSCI E-121 September 3, 2013

Kinds of Automata

Finite Automata

a b a

F.C.

⇒⇒

• Head scans left to right

• Check simple patterns

• Finite Table Lookup

• Can’t count without limit

Pushdown Automata

a a b

F.C.

⇒⇒ a
b
a
a

Input

Stack

• Use stack to count, balance
parentheses

• Check many syntax rules

21

Harvard CS 121 & CSCI E-121 September 3, 2013

A model for general-purpose computers

Turing Machines

� b a r

F.C.

⇔

• Control is still finite

• Head moves left and right,
reads, and writes

22

Harvard CS 121 & CSCI E-121 September 3, 2013

Q1: What computational problems can be solved by these
automata?

• Finite Automata recognize the regular languages.

A regular language is one that can be described by a regular
expression, e.g.

a∗ generates {ε, a, aa, aaa, . . .}

∗ = “any number of”

(ab)∗ generates {ε, ab, abab, ababab, . . .}

(a∗ab)∗a∗ generates {???}

(a ∪ ab)∗ generates {???}

23

Harvard CS 121 & CSCI E-121 September 3, 2013

Q1: What computational problems can be solved by these
automata?

Pushdown Automata: the context-free languages. A PDA can
determine whether or not strings are generated by any fixed
context-free grammar, e.g.{

S → aSb

S → ε

}
generates {ε, ab, aabb, aaabbb, . . .}

Note: this is not the same as a∗b∗!

S ⇒ aSb ⇒ aaSbb ⇒ aabb

24

Harvard CS 121 & CSCI E-121 September 3, 2013

CFGs as models for natural languages

〈sentence〉 → 〈noun− phrase〉 〈verb〉
〈noun− phrase〉 → 〈noun〉 | 〈adjective〉 〈noun− phrase〉

〈noun〉 → cat | dog | mouse

〈adjective〉 → black | hungry

〈verb〉 → jumps | barks


generates {black dog jumps,hungry black cat barks, . . .}

25

Harvard CS 121 & CSCI E-121 September 3, 2013

More powerful models

Turing machines: the computable languages

• Captures our intuitive notion of “computable”
(Church–Turing Thesis).

• TMs equivalent in expressiveness to C programs, LISP
programs, Pentium CPU, (hypothetical) quantum computers, ...

• Concept of computability is independent of technology!
11/02/2006 06:02 PMturing.jpg 170!201 pixels

Page 1 of 1http://www.galha.org/image/turing.jpg

26

Harvard CS 121 & CSCI E-121 September 3, 2013

Church’s Thesis (Church-Turing Thesis)

Intuitive notion of “computable”
≡

Formal notion of “computable
by a Turing Machine”

Are there non-computable languages?

Yes – in fact “almost all” languages are not computable

What are some examples?

[Problems to avoid!]

27

Harvard CS 121 & CSCI E-121 September 3, 2013

Q2: Are there computational problems that cannot be solved
by these automata?

• Yes — in fact “almost all” problems are not computable.

• But what are some examples? [Problems to avoid!]

• A non-regular problem?

• A non-context-free problem?

• Non-computable problems?

28

Harvard CS 121 & CSCI E-121 September 3, 2013

Classifying languages

FA/ PDA/ TM/
regular? context free? computable?

PARITY
MAJORITY
PRIMALITY
C SYNTAX
HALTING
TSP
2-COLORING
DIOPHANTINE EQ.

29

Harvard CS 121 & CSCI E-121 September 3, 2013

Q3: Are there computable problems that cannot be solved
efficiently?

• A problem need not be uncomputable to be
practically unsolvable (It may just take too long!)

• Theory of relative difficulty of problems

→ Based on resources required:

· Time

· Memory

· . . .

30

Harvard CS 121 & CSCI E-121 September 3, 2013

The NP-Complete Problems

TRAVELLING SALESMAN PROBLEM, GRAPH
3-COLORING, MULTIPROCESSOR SCHEDULING,
PROTEIN FOLDING, ...

Do they have efficient algorithms? Either all do or none do!

This is the famous (and still open) P vs. NP Question.

31

Harvard CS 121 & CSCI E-121 September 3, 2013

More NP-Complete Problems

• Integer Linear Program

Is there a solution over the positive integers to a system like
this?

x1 − 4x2 + x3 = 0
x1 + x2 + x3 ≤ 0
x1 + 7x3 ≥ 0

• Boolean Satisfiability

Are there true/false values for the variables to make this
formula true?

(x ∨ y ∨ z) ∧ (¬x ∨ ¬y) ∧ (¬z ∨ y)
[∨ = “or” ∧ = “and” ¬ = “not”]

32

Harvard CS 121 & CSCI E-121 September 3, 2013

For computer scientists

• Technology-independent foundations of CS.

• How to reason precisely about computation.

• Topics applicable to other parts of CS.

Circuit Design Finite Automata
Distributed Computing Finite Automata
Parsing + Compiling Context-free Languages
Natural Language Processing Context-free Languages
Programming Langs Regular Expressions, Uncomputability
Artificial Intelligence Finite Automata, Complexity Theory
Algorithm Design Complexity Theory
Cryptography Complexity Theory

33

Harvard CS 121 & CSCI E-121 September 3, 2013

For mathematicians

A “computational perspective” on mathematics.
Ex: which is a ‘better’ formula for the n’th Fibonacci number
(1,1,2,3,5,8,13,21...)?

1. Fn = 1√
5

(
1+
√

5
2

)n

− 1√
5

(
1−
√

5
2

)n

.

2. Fn = the number of strings over alphabet {a, b} of length n− 2
with no two consecutive b’s.

34

Harvard CS 121 & CSCI E-121 September 3, 2013

Connection between computation and mathematical proofs

• Uncomputability ↔ Gödel’s Incompleteness Theorem.

• P vs. NP ↔ “are mathematical proofs as easy to find as they
are to verify?”

• Can mathematics be automatized?

Important and famous problems for Mathematics

Rich interplay between the Theory of Computation and various
areas of mathematics (logic, combinatorics, algebra, number
theory, probability, functional analysis, algebraic geometry,
topology, ...). Many research opportunities.

35

Harvard CS 121 & CSCI E-121 September 3, 2013

For others

• How to recognize and interpret computational intractability in
case it appears in your domain, e.g. PROTEIN FOLDING,
NEURON TRAINING, AUCTION WINNER-DETERMINATION,
MIN-ENERGY CONFIGURATION OF A GAS

• How to model computation, e.g. as it may occur in Cells/DNA,
the brain, economic systems, physical systems, social
networks, ...

36

Harvard CS 121 & CSCI E-121 September 3, 2013

Philosophically interesting questions

• Are there well-defined problems that cannot be solved
automatically?

• Can we always search for a solution to a puzzle more quickly
than trying all possibilities?

• Can we formalize the idea that one problem is “harder” than
another?

37

Harvard CS 121 & CSCI E-121 September 3, 2013

Prerequisites

“Experience in formal mathematics at the level of CS 20.”

• Comfort reading and writing mathematical proofs.

• Sets (e.g. cardinality, powersets, cartesian products)

• Functions (e.g. one-to-one, onto, bijections)

• Relations (e.g. symmetric, transitive, reflexive)

• Graphs (e.g. directed vs. undirected)

• Proofs by induction

• Propositional logic (e.g. truth tables, De Morgan’s Laws, CNF)

• Growth rates (O notation)

You do not need to know/remember all of these concepts.

38

Harvard CS 121 & CSCI E-121 September 3, 2013

Strengthening your Mathematical Preparation

• Sipser, Chapter 0.

• Problem Set 0. Graded, but will not count. Strongly
recommended!

• Open sections this week.

• Office Hours (mine & the TFs).

• Course materials for CS 20.

• Books by Solow and Rosen (see syllabus).

If you have any doubts about your preparation, come talk to me!

39

Harvard CS 121 & CSCI E-121 September 3, 2013

Other Organizational Remarks

• No handouts, everything on the Web, including these slides

• Read collaboration policy carefully and respect it

• Lecture videos available 24 hours after lecture

• Sections start meeting this week, but no sectioning until next
weekend

• One section will be a ”math section”

• Use Piazza for questions, course staff monitors it

• Use of LaTeX for problem sets is mandatory

40

