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Introduction to the Theory of Computation

Computer Science 121 and CSCI E-121

Objective:

Make a theory out of the idea of computation.
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What is “computation”?

• Paper + Pencil Arithmetic

121
+ 99

220

• Abacus

• Calculator w/moving parts (Babbage wheels, Mark I)

• Ruler & compass geometry constructions

• Digital Computers
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Further computing devices

• Programs in C, Java.

• The Internet and other distributed systems.

• Cells/DNA?

• The human brain?

• Quantum computers?

For us computation will be

Processing information by unlimited application
of a finite set of operations or rules
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What do we want in a “theory”?
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What we would like to get past
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What we would like to get past

• “This must be hard because I can’t figure out how do it”
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What we would like to get past

• “This must be hard because I can’t figure out how do it”

• “This must be hard because I can’t figure out how do it and
neither can anybody else, including a lot of really smart people”
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What we would like to get past

• “This must be hard because I can’t figure out how do it”

• “This must be hard because I can’t figure out how do it and
neither can anybody else, including a lot of really smart people”

• “This method seems to get the right answer on every case I’ve
tried”
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What we would like to get past

• “This must be hard because I can’t figure out how do it”

• “This must be hard because I can’t figure out how do it and
neither can anybody else, including a lot of really smart people”

• “This method seems to get the right answer on every case I’ve
tried”

• “It’s never crashed while I was testing it so let’s ship it”
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What do we want in a “theory”?

• Precision

• Mathematical, formal.

• Can prove theorems about computation,
both positive (what can be computed)
and negative (what cannot be computed).

• Generality

• Technology-independent, applies to the future as well as the
present

• Abstraction: ignores inessential details (though it may pay to
restore them later)
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“Inessential” details

• Simple models are easier to reason about

• Once you have some model, it may pay to restore detail
previously ignored

• Example: The UPS delivery truck

• Example: Boarding an airplane
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An automaton is an abstraction

A machine reading symbols from a tape

A system receiving discrete impulses over time

A chip
12
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Representing “Information”

• Alphabet

Ex: a, b, c, . . . , z.

• Strings: finite concatenation of alphabet symbols, order
matters

Ex: qaz, abbab

ε = empty string (length 0; sometimes e)

• Inputs (& outputs) of computations are strings.

⇒ we focus on discrete computations
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Computational Problems (i.e. Tasks)

A single question that has infinitely many different instances

• PARITY : given a string x, does it have an even number of a’s?

• MAJORITY : given a string x, does it have more a’s than b’s?

Problems are defined extensionally: a problem is

• the set of all instances of the question to which the answer is
positive

• the set of all 〈question, answer〉 pairs
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Examples of computational problems on numbers

• PRIMALITY : given a number x, is x prime?

• ADDITION: given two numbers x, y, compute x + y.

• A numerical ”problem” is a set of binary or decimal numerals

Examples of computational problems about computer
programs

• C SYNTAX: given a string of ASCII symbols, does it follow the
syntax rules for the C programming language?

• HALTING PROBLEM: given a computer program (say in C),
can it ever get stuck in an infinite loop?
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Computational problems from pure and applied
mathematics

• DIOPHANTINE EQUATIONS: Given a polynomial equation
(e.g. x2 + 3xyz − 44z3 = 0), does it have an integer solution?

• TRAVELLING SALESMAN PROBLEM: Given a set of ‘cities’
in the plane, what is the fastest way to visit them all?

• GRAPH 2-COLORING (3-COLORING): Given a set of people,
can they be partitioned into 2 groups so that every pair of
people in each group gets along? (3 groups?)
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More examples of computational problems

• REGISTER ALLOCATION

• MULTIPROCESSOR SCHEDULING

• PROTEIN FOLDING

• DECODING ERROR-CORRECTING CODES

• NEURON TRAINING

• AUCTION WINNER

• MIN-ENERGY CONFIGURATION OF A GAS

• ...
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The (Mathematical) Idea of a Language

• A language: any set of strings.

• “Solving a yes/no computational problem”
⇔ “Deciding if a string is in a given language”
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Examples of Languages

• All words in the American Heritage Dictionary

{a, aah, aardvark, . . . , zyzzva}

Mathematically simple, because it’s finite!

• All strings with an even number of a’s.

{ε, b, bb, aa, baa, aba, baa, . . .}

Note: “ε” denotes the string of length 0 – the empty string

Infinite – but simple membership rule

• All syntactically correct C programs

(counting space and newline as characters)
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Computational Models

What is a computer? First try: a mathematical automaton.

a a r d v . . .

Finite
Control

Yes

No

We don’t care how the control is implemented – only that it
have a finite number of states and change states based on
fixed rules
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Kinds of Automata

Finite Automata

a b a

F.C.

⇒⇒

• Head scans left to right

• Check simple patterns

• Finite Table Lookup

• Can’t count without limit

Pushdown Automata

a a b

F.C.

⇒⇒ a
b
a
a

Input

Stack

• Use stack to count, balance
parentheses

• Check many syntax rules
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A model for general-purpose computers

Turing Machines

� b a r

F.C.

⇔

• Control is still finite

• Head moves left and right,
reads, and writes

22



Harvard CS 121 & CSCI E-121 September 3, 2013

Q1: What computational problems can be solved by these
automata?

• Finite Automata recognize the regular languages.

A regular language is one that can be described by a regular
expression, e.g.

a∗ generates {ε, a, aa, aaa, . . .}

∗ = “any number of”

(ab)∗ generates {ε, ab, abab, ababab, . . .}

(a∗ab)∗a∗ generates {???}

(a ∪ ab)∗ generates {???}
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Q1: What computational problems can be solved by these
automata?

Pushdown Automata: the context-free languages. A PDA can
determine whether or not strings are generated by any fixed
context-free grammar, e.g.{

S → aSb

S → ε

}
generates {ε, ab, aabb, aaabbb, . . .}

Note: this is not the same as a∗b∗!

S ⇒ aSb ⇒ aaSbb ⇒ aabb
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CFGs as models for natural languages

〈sentence〉 → 〈noun− phrase〉 〈verb〉
〈noun− phrase〉 → 〈noun〉 | 〈adjective〉 〈noun− phrase〉

〈noun〉 → cat | dog | mouse

〈adjective〉 → black | hungry

〈verb〉 → jumps | barks


generates {black dog jumps,hungry black cat barks, . . .}
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More powerful models

Turing machines: the computable languages

• Captures our intuitive notion of “computable”
(Church–Turing Thesis).

• TMs equivalent in expressiveness to C programs, LISP
programs, Pentium CPU, (hypothetical) quantum computers, ...

• Concept of computability is independent of technology!
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Church’s Thesis (Church-Turing Thesis)

Intuitive notion of “computable”
≡

Formal notion of “computable
by a Turing Machine”

Are there non-computable languages?

Yes – in fact “almost all” languages are not computable

What are some examples?

[Problems to avoid!]
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Q2: Are there computational problems that cannot be solved
by these automata?

• Yes — in fact “almost all” problems are not computable.

• But what are some examples? [Problems to avoid!]

• A non-regular problem?

• A non-context-free problem?

• Non-computable problems?
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Classifying languages

FA/ PDA/ TM/
regular? context free? computable?

PARITY
MAJORITY
PRIMALITY
C SYNTAX
HALTING
TSP
2-COLORING
DIOPHANTINE EQ.
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Q3: Are there computable problems that cannot be solved
efficiently?

• A problem need not be uncomputable to be
practically unsolvable (It may just take too long!)

• Theory of relative difficulty of problems

→ Based on resources required:

· Time

· Memory

· . . .
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The NP-Complete Problems

TRAVELLING SALESMAN PROBLEM, GRAPH
3-COLORING, MULTIPROCESSOR SCHEDULING,
PROTEIN FOLDING, ...

Do they have efficient algorithms? Either all do or none do!

This is the famous (and still open) P vs. NP Question.
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More NP-Complete Problems

• Integer Linear Program

Is there a solution over the positive integers to a system like
this?

x1 − 4x2 + x3 = 0
x1 + x2 + x3 ≤ 0
x1 + 7x3 ≥ 0

• Boolean Satisfiability

Are there true/false values for the variables to make this
formula true?

(x ∨ y ∨ z) ∧ (¬x ∨ ¬y) ∧ (¬z ∨ y)
[ ∨ = “or” ∧ = “and” ¬ = “not” ]
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For computer scientists

• Technology-independent foundations of CS.

• How to reason precisely about computation.

• Topics applicable to other parts of CS.

Circuit Design Finite Automata
Distributed Computing Finite Automata
Parsing + Compiling Context-free Languages
Natural Language Processing Context-free Languages
Programming Langs Regular Expressions, Uncomputability
Artificial Intelligence Finite Automata, Complexity Theory
Algorithm Design Complexity Theory
Cryptography Complexity Theory
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For mathematicians

A “computational perspective” on mathematics.
Ex: which is a ‘better’ formula for the n’th Fibonacci number
(1,1,2,3,5,8,13,21...)?

1. Fn = 1√
5

(
1+
√

5
2

)n

− 1√
5

(
1−
√

5
2

)n

.

2. Fn = the number of strings over alphabet {a, b} of length n− 2
with no two consecutive b’s.
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Connection between computation and mathematical proofs

• Uncomputability ↔ Gödel’s Incompleteness Theorem.

• P vs. NP ↔ “are mathematical proofs as easy to find as they
are to verify?”

• Can mathematics be automatized?

Important and famous problems for Mathematics

Rich interplay between the Theory of Computation and various
areas of mathematics (logic, combinatorics, algebra, number
theory, probability, functional analysis, algebraic geometry,
topology, ...). Many research opportunities.
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For others

• How to recognize and interpret computational intractability in
case it appears in your domain, e.g. PROTEIN FOLDING,
NEURON TRAINING, AUCTION WINNER-DETERMINATION,
MIN-ENERGY CONFIGURATION OF A GAS

• How to model computation, e.g. as it may occur in Cells/DNA,
the brain, economic systems, physical systems, social
networks, ...
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Philosophically interesting questions

• Are there well-defined problems that cannot be solved
automatically?

• Can we always search for a solution to a puzzle more quickly
than trying all possibilities?

• Can we formalize the idea that one problem is “harder” than
another?

37



Harvard CS 121 & CSCI E-121 September 3, 2013

Prerequisites

“Experience in formal mathematics at the level of CS 20.”

• Comfort reading and writing mathematical proofs.

• Sets (e.g. cardinality, powersets, cartesian products)

• Functions (e.g. one-to-one, onto, bijections)

• Relations (e.g. symmetric, transitive, reflexive)

• Graphs (e.g. directed vs. undirected)

• Proofs by induction

• Propositional logic (e.g. truth tables, De Morgan’s Laws, CNF)

• Growth rates (O notation)

You do not need to know/remember all of these concepts.
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Strengthening your Mathematical Preparation

• Sipser, Chapter 0.

• Problem Set 0. Graded, but will not count. Strongly
recommended!

• Open sections this week.

• Office Hours (mine & the TFs).

• Course materials for CS 20.

• Books by Solow and Rosen (see syllabus).

If you have any doubts about your preparation, come talk to me!
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Other Organizational Remarks

• No handouts, everything on the Web, including these slides

• Read collaboration policy carefully and respect it

• Lecture videos available 24 hours after lecture

• Sections start meeting this week, but no sectioning until next
weekend

• One section will be a ”math section”

• Use Piazza for questions, course staff monitors it

• Use of LaTeX for problem sets is mandatory
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