
CS 121, Section 1

Week of September 10, 2012

Exercise 0.1. For any language L, let NOREPEATB(L) be the language of strings in L,
but with any b’s that are immediately preceded by another b removed. So, for example, if
babbaaababbb ∈ L, then babaaabab ∈NOREPEATB(L). Show that if L is regular, then so is
NOREPEATB(L).

Solution:

We want to construct a machine that accepts strings s without consecutive b’s such that
some number of b’s can be added after any b in s to yield a string in L. The intuition is
to modify a DFA for L so that its states track the previous character read. If the previous
character read was an a, then it should act much like the DFA for L. If the previous character
read was a b, then the machine should be able to follow any number of ε transitions which
would simulate what would happen if the DFA for L read that number of b’s instead of just
one.

Specifically, if M = (Q,Σ, δ, q0, F ) is the original DFA, let M ′ = (Q′,Σ, δ′, q0, F
′) be

the NFA that will recognize norepeatb(l). We define Q′ as follows: for each qi ∈ Q, let
there be a corresponding qi, q

′
i ∈ Q′, i.e., Q′ contains every state in Q plus a corresponding

“prime” state. We will use this notation throughout the proof. Define δ′ as follows: suppose
δ(qi, a) = qj and δ(qi, b) = qk. Then

δ′(qi, a) = {qj}
δ′(qi, b) = {q′k}
δ′(q′i, a) = {qj}
δ′(q′i, ε) = {q′k}
δ′(q′i, b) = ∅

To summarize, M ′ behaves identically to M when it reads a: if it is in a prime or a non-prime
state, it transitions to the non-prime state that corresponds to the state M would transition
to. When M ′ reads b, its behavior depends on the previous input. If it is in a non-prime
state, it transitions to the prime state that corresponds to the state M would transition to.
If it is in a prime state, it enters into a null state on reading b. Finally, for every b transition
in M from qi to qj, there is a corresponding ε transition in M ′ from q′i to q′j. Finally, for all
qi ∈ F , we say let the corresponding states qi, q

′
i ∈ F ′.

1



Now, suppose we have a string w ∈ l. If w contains no b’s or no repeat b’s, then
norepeatb(w), which we define to be w with all repeat b’s removed, has no b’s and M ′ will
behave identically to M and hence will accept norepeatb(l). So, suppose w has at least
one string of one or more repeated b’s. Then M ′ will read norepeatb(w) until it hits the
first b, at which time it will enter a prime state. It will then undergo ε transitions for each
prime state corresponding to M ’s original behavior on w on reading the repeated b’s. Thus,
M ′’s behavior on norepeatb(w) will mimic that of M on w, so M ′ will accept.

Finally, suppose we have some w /∈ norepeatb(l). Then we cannot repeat b’s in w
to achieve a string in L. Thus, there can be no computation path in M ′ that leads to an
accept state on reading w, since the only difference between M and M ′ is that M ′ allows ε
transitions in place of transitions in the case of a repeated b that correspond exactly to M ’s
behavior.

Thus M ′ acccept norepeatb(l) and only this language, so that norepeatb(l) is reg-
ular.

2


