Section 3 Handout

CS 121
September 26, 2013

Today's Topics

- Regular and Non-regular Languages
- Context-Free Grammars

1 Regular and Nonregular Languages

There are countably many regular expressions over a language, but there are uncountably many languages-so some of these languages must not be regular! But how do we find an explicitly non-regular language? We have two techniques: the pumping lemma and the closure properties of regular languages. You can use either of these techniques to prove (by contradiction) that a language is non-regular.

Pumping Lemma for regular languages:

If L is a regular language, then there exists a constant $p>0$ such that for any string $w \in L$ with $|w|>p$, there exist strings $x, y, z \in \Sigma^{*}$, such that $w=x y z,|x y| \leq p, y \neq \epsilon$, and $x y^{n} z \in L$ for all $n \geq 0$.

Closure Properties:

Recall from lecture (and from last week's section) that regular languages are closed under union, concatenation, Kleene Star, intersection, difference, complement, reversal.

Exercise 1.1. Which of the following are necessarily regular?

- A finite language.
- A union of finitely many regular languages.
- $\left\{x: x \in L_{1}\right.$ and $\left.x \notin L_{2}\right\}$ where L_{1} and L_{2} are regular.
- A superset of a regular language.

Exercise 1.2. Show that $L=\left\{a^{i} b^{j}: 0 \leq i<j\right\}$ is non-regular using the pumping lemma.
Exercise 1.3. Let $L=\left\{w w \mid w \in \Sigma^{*}\right\}$. Show that L is non-regular using the pumping lemma.

Exercise 1.4. Let $L=\{w: w$ has more instances of substring aa than of substring bb\} Show that L is nonregular.
Exercise 1.5. Show that $L=\left\{b^{n} c^{2^{k}}: n \geq 1, k \geq 1\right\}$ is non-regular.

2 Context-Free Languages

Context-Free Grammars: A context-free grammar G is a four-tuple, defined as follows: $G=(V, \Sigma, R, S)$, where V (the set of variables) is an alphabet, Σ (the set of terminals) is a set disjoint from V, R is a finite set of rules, with each rule being a variable and a string of variables and terminals, and S (the start symbol) is an element of V.

Exercise 2.1. Give a context-free grammar for $L=\{w: w$ is an even-length palindrome $\}$
Exercise 2.2. (a) Give a context-free grammar for $L=\{w: w$ has three more a 's than b 's $\}$ over the alphabet $\Sigma=\{a, b\}$
(a) Draw a parse tree for the string baabaaa $\in L$.

Exercise 2.3. Let $L=\left\{w y: w, y \in L\left(a^{*} \cup b^{*}\right)\right.$ and $\left.|w|=|y|\right\}$. Is L regular? Is L context-free?

