
CS 121 Section 4

Harvard University

October 3, 2013

1 Concept Review

1.1 Context Free Grammars

A context-free grammar G is a four-tuple, G = (V,Σ, R, S), defined as follows:

• V is the set of variables

• Σ is the set of terminals, and so must be disjoint from V

• R is a finite set of rules, where each rule consists of a variable transforming into a
string of variables and terminals

• S is the start symbol, and is an element of V

The idea is that the grammar consists of all strings over Σ∗, our terminal symbols, which we
can get by starting with S and following the rules. The process of moving from S to a final
string of terminals is known as a derivation.

1.2 Derivations

If x, y, and z are strings of variables and terminals and A → y is a rule of the grammar,
then we can write xAz ⇒ xyz and say xAz yields xyz in one step.

Extending that idea, if x1 and xn are strings of variables and terminals then we can say
x1

∗⇒ xn, or x1 derives xn, if we can get from x1 to xn by following 0 or more rules in
succession. More formally, x1

∗⇒ xn if x1 = xn or there is a sequence x1, x2 . . . xn such that
for all i, xi ⇒ xi+1. In practice, we often aren’t very careful about distinguishing between
‘derive’ and ‘yield’, and it is ok to use them interchangeably.

The language of a grammar G is then defined as L(G) = {w ∈ Σ∗ : S
∗⇒ w}

A derivation for a string w in a grammar G is any series of strings S ⇒ x1 · · · ⇒ w that
show how to get w from the rules of the grammar. A leftmost derivation for a string is a
derivation where in each step, the leftmost variable in the string is substituted. A grammar
is said to be ambiguous if there exists a string in the language of the grammar which has
two different leftmost derivations. We often visualize derivations using parse trees.

1

2 Exercises

Exercise 2.1. Show that the following languages are context-free:

1. L = {aibjck : i, j, k ∈ N, and if i = 1 then j ≥ k} over Σ = {a, b, c};

2. L = {w : w = wR};

1. S → aJ | aaABC | BC
J → ε | bJ | bJc
A→ aA | ε
B → bB | ε
C → cC | ε

2. S → a | b | aSa | bSb | ε

Exercise 2.2. Let G = (V,Σ, R, S) be the following grammar.

S → AS | ε
A → A1 | 0A1 | ε
Σ = {0, 1}
V = {A, S}

1. Show that G is ambiguous.

For this we can generate the string 011 with two different derivations (both replacing
leftmost variable first):
S → AS → 0A1S → 01S → 01AS → 01A1S → 011S → 011 or
S → AS → 0A1S → 0A11S → 011S → 011

2. Give a new grammar that generates the same language as G but is unambiguous. Jus-
tify briefly why your grammar generates the same language and why it is unambiguous.

This language is a little hard to describe, it’s like (0m1n)∗, with m ≤ n. New grammar:

S → AS | 1S | ε
A → 01 | 0A1

Quick explanation: If a string has more 1s than 0s following every ”clump” of 0s, then
there are two cases: If w starts with a 1, we can write it as 1w1, with w1 ∈ L and use
the rule S → 1S. If w starts with a 0, we can write it as 0m1mw2 with w2 ∈ L and use
the rule S → AS. Our grammar covers either case and because the cases are disjoint
it should be unambiguous.

2

Exercise 2.3. Consider the following grammar:

S → 〈SUBJECT 〉〈V ERB〉〈OBJECT 〉〈MODIFIER〉
〈SUBJECT 〉 → The woman

〈V ERB〉 → hit

〈OBJECT 〉 → the man 〈MODIFIER〉
〈MODIFIER〉 → with an umbrella | ε

1. Show that this grammar is ambiguous.

For example:
(The woman hit (the man with the umbrella)), or
(The woman hit (the man) with the umbrella)

Exercise 2.4. Show that every regular language has an unambiguous context-free grammar.

Proof. (Sketch) Let L be a regular language. We will construct a CFG for L from the DFA
M = (Σ, Q, q0, F, δ) that accepts L. We let Q be the set of variables of the CFG, introduce
the rule q −→ σq′ for every q ∈ Q, σ ∈ Σ, q′ = δ(q, σ), and introduce the rule q −→ ε for
every q ∈ F . We let q0 be the starting variable. This is a CFG for L, since for every x ∈ L
the transition function δ takes q0 to some state in F , thus we have q0

∗
=⇒ x, and vice versa.

Furthermore, the CFG is unambiguous since for every x where q0
∗⇒ x, only one rule can be

applied at each step (by an easy induction).

Exercise 2.5. Given an arbitrary context free grammar G, provide a general procedure to
determine if L(G) is empty.

Proof. (Sketch) Call a variable generating if it yields at least some string of terminal symbols.
We build the set of generating variables iteratively, and accept that L(G) is empty if the
starting variable is not in the set.

We build the set Y of generating variable as follows. Intially set Y = ∅. Scan each rule
A −→ . . . where A /∈ Y , and add A to Y if all variables in the RHS are in Y . Stop when
no more variable can be added. Clearly the procedure stops after finitely many steps since
each iteration adds another variable to Y .

To argue correctness we need to show that Y is exactly the set of generating variables.
Clearly every variable in Y is generating, by induction on the order they are added to Y .
Also, every generating variable A is in Y , by induction on the parse tree of any terminal
string that A yields.

3

