CS 121 Section 7

Harvard University

October 31 - November 2nd, 2013

1 Overview

This week we are covering universal TMs, TM encodings, nondeterministic TMs, dovetailing simulation, enumerators, TM algorithms, and high-level descriptions of TMs.

1.1 High-level descriptions

Given the ChurchTuring Thesis and representation independence, we no longer need to refer to a specific computing model or or data representation when describing an algorithm. Instead:

- Describe it as a sequence of steps operating on higher-level data types (e.g. numbers, graphs, automata, grammars).
- Each step: simple enough that it is clear it can be implemented on a reasonable model (such as a TM) using a reasonable data representation.
- Freely make use of algorithms we have seen (or are well-known, such as elementary arithmetic) as subroutines.
- Freely make use of control-flow primitives, such as loops, if-then-else, gotos, etc.

1.2 Encodings and Universal TMs

We can encode complex data into strings over a small alphabet. e.g. we denote the encoding of a TM M as $\langle M \rangle$.

On input $\langle M, x \rangle$ a universal TM U simulates M when run on input x. i.e. it accepts/rejects/'loops' if and only if M(x) accepts/rejects/loops.

1.3 Enumerators

A language is enumerable if its elements can be listed by a TM (with the ability to output a list of strings, not just accept/reject).

1.4 NTMs and Dovetailing

A nondeterministic TM (like a PDA or NFA) can follow multiple computation paths. It accepts if any of the computation paths accepts.

NTMs are equivalent to TMs. (Every language recognized by a NTM is recognized by a TM and vice versa. What about decidable languages?) We proved this equivalence by dovetailing: we simulate each possible computation path, but we have to be careful not to follow infinitely long paths.

2 Excercises

Exercise 2.1. Show that the class of decidable languages is closed under intersection.

Solution: Run M_1 then M_2 and accept iff both accept. Before you start, copy the input onto a second tape and, before running M_2 empty the tape and copy the input back. \square

Exercise 2.2. Let $L = \{\langle M \rangle | M \text{ is a DFA and for every string } w, \text{ if } M \text{ accepts } w, \text{ then } M \text{ also accepts } w^R \}$. Show that L is decidable.

Solution: Construct a decider D for L as follows. $D(\langle M \rangle)$:

- 1. Confirms that its input, $\langle M \rangle$, is a valid encoding for a DFA
- 2. Using the method from PS1, constructs NFA N^R such that $L(M)^R = L(N^R)$
- 3. Using the subset construction, constructs DFA M^R such that $L(M^R) = L(N^R)$
- 4. Constructs DFA $\overline{M^R}$ such that $L(\overline{M^R}) = \overline{L(M^R)}$ by switching the accept states and non-accepts states from M^R
- 5. Using the cross-product construction from lecture 4 it constructs DFA M_{\cap} such that $L(M_{\cap}) = L(M) \cap L(\overline{M^R})$
- 6. Checks whether $L(M_{\cap}) = \emptyset$ by seeing if there is some path from the start state to any accept state. If the language is empty, then D accepts. Otherwise, it rejects.

D decides L: First, note that all steps in the construction of M_{\cap} are guaranteed to take a finite amount of time, and so M_{\cap} will halt. If D accepts, that means that $L(M_{\cap}) = \emptyset$. So, there is no $w \in L(M_{\cap})$, and so no w in both L(M) and $L(\overline{M^R})$. So, if M accepts w, $w \in L(M)$, then $w \notin L(\overline{M^R}) \to w \in L(M^R) \to w \in L(M)$ and so M accepts w^R as desired.

If D rejects, then there exists some $w \in L(M_{\cap}) = L(M) \cap L(\overline{M^R})$. So, M accepts w, and $w \in L(\overline{M^R}) \to w \notin L(M^R) \to w \notin L(M)^R \to w^R \notin L(M)$, so M doesn't accept w^R as desired. So, M' decides L, and L is decidable. \square

Exercise 2.3. Show that a language L is decidable if and only if there is an enumerator that outputs the elements of L in lexicographic order.

Solution: First suppose that L is decidable, and let M be a decider for L. We construct an enumerator E using the following algorithm. Let the strings in Σ^* in lexicographic order be w_1, w_2, \ldots

- 1. For each $w = w_1, w_2, ...$:
 - (a) Run M on input w.
 - (b) If it accepts, emit w_1 ; otherwise, don't emit anything.

We now show that E is an enumerator for L. For all $w \in \Sigma^*$, E will eventually run M on w (since M halts on all previous inputs), and M will accept if and only if $w \in L$, so E will emit w if and only if $w \in L$. Also, E outputs strings in lexicographic order since it tries them in lexicographic order.

Second suppose there is an enumerator E that outputs the elements of L in lexicographic order. If L is finite, then we know L is decidable (indeed, it is regular). We now show that if L is infinite, L is decidable. Our decider M uses the following algorithm on input w:

- 1. Run E. For each string w' emitted by E:
 - (a) Check if it's equal to w; if so, halt and accept.
 - (b) Check it it's lexicographically greater than w; if so, halt and reject.
 - (c) If neither of those is true, continue.

We now argue that M is a decider for L: if $w \in L$, then eventually E will emit w, and at that point M will halt and accept; furthermore, since E emits lexicographically, M will not have rejected yet because all strings so far will be lexicographically smaller than w. If $w \notin L$, then E will never emit w, so M will never accept; furthermore, since there are a finite number of strings lexicographically smaller than w, and E is infinite, E will eventually emit some string lexicographically greater than E0; at this point, E1 will halt and reject. E2

Exercise 2.4. Let $L = \{\langle M \rangle \$x : M \text{ only uses the first } |x| \text{ cells of the tape when run on } x\}$. Show that L is decidable.

Solution: There are only $l = |\Gamma|^{|x|} \cdot |x| \cdot |Q|$ (number of tapes times number of head positions times number of states) different configurations M can be in. So it can only run for l+1 steps before either halting or repeating a configuration (pigeonhole principle). So run M for l+1 steps and, if it doesn't use more than the first |x| cells in that time, it never will. \square