
CS 121 Section 7

Harvard University

October 31 - November 2nd, 2013

1 Overview

This week we are covering universal TMs, TM encodings, nondeterministic TMs, dovetailing
simulation, enumerators, TM algorithms, and high-level descriptions of TMs.

1.1 High-level descriptions

Given the ChurchTuring Thesis and representation independence, we no longer need to
refer to a specific computing model or or data representation when describing an algorithm.
Instead:

• Describe it as a sequence of steps operating on higher-level data types (e.g. numbers,
graphs, automata, grammars).

• Each step: simple enough that it is clear it can be implemented on a reasonable model
(such as a TM) using a reasonable data representation.

• Freely make use of algorithms we have seen (or are well-known, such as elementary
arithmetic) as subroutines.

• Freely make use of control-flow primitives, such as loops, if-then-else, gotos, etc.

1.2 Encodings and Universal TMs

We can encode complex data into strings over a small alphabet. e.g. we denote the encoding
of a TM M as 〈M〉.

On input 〈M,x〉 a universal TM U simulates M when run on input x. i.e. it ac-
cepts/rejects/‘loops’ if and only if M(x) accepts/rejects/loops.

1.3 Enumerators

A language is enumerable if its elements can be listed by a TM (with the ability to output
a list of strings, not just accept/reject).

1

1.4 NTMs and Dovetailing

A nondeterministic TM (like a PDA or NFA) can follow multiple computation paths. It
accepts if any of the computation paths accepts.

NTMs are equivalent to TMs. (Every language recognized by a NTM is recognized by
a TM and vice versa. What about decidable languages?) We proved this equivalence by
dovetailing: we simulate each possible computation path, but we have to be careful not to
follow infinitely long paths.

2 Excercises

Exercise 2.1. Show that the class of decidable languages is closed under intersection.

Solution: Run M1 then M2 and accept iff both accept. Before you start, copy the input
onto a second tape and, before running M2 empty the tape and copy the input back.

Exercise 2.2. Let L = {〈M〉| M is a DFA and for every string w, if M accepts w, then M
also accepts wR}. Show that L is decidable.

Solution: Construct a decider D for L as follows. D(〈M〉):

1. Confirms that its input, 〈M〉, is a valid encoding for a DFA

2. Using the method from PS1, constructs NFA NR such that L(M)R = L(NR)

3. Using the subset construction, constructs DFA MR such that L(MR) = L(NR)

4. Constructs DFA MR such that L(MR) = L(MR) by switching the accept states and
non-accepts states from MR

5. Using the cross-product construction from lecture 4 it constructs DFA M∩ such that
L(M∩) = L(M) ∩ L(MR)

6. Checks whether L(M∩) = ∅ by seeing if there is some path from the start state to any
accept state. If the language is empty, then D accepts. Otherwise, it rejects.

D decides L: First, note that all steps in the construction of M∩ are guaranteed to take
a finite amount of time, and so M∩ will halt. If D accepts, that means that L(M∩) = ∅.
So, there is no w ∈ L(M∩), and so no w in both L(M) and L(MR). So, if M accepts w,
w ∈ L(M), then w 6∈ L(MR) → w ∈ L(MR) → w ∈ L(M)R → wR ∈ L(M) and so M
accepts wR as desired.

If D rejects, then there exists some w ∈ L(M∩) = L(M) ∩ L(MR). So, M accepts w,
and w ∈ L(MR)→ w 6∈ L(MR)→ w 6∈ L(M)R → wR 6∈ L(M), so M doesn’t accept wR as
desired. So, M ′ decides L, and L is decidable.

Exercise 2.3. Show that a language L is decidable if and only if there is an enumerator that
outputs the elements of L in lexicographic order.

2

Solution: First suppose that L is decidable, and let M be a decider for L. We construct
an enumerator E using the following algorithm. Let the strings in Σ∗ in lexicographic order
be w1, w2,

1. For each w = w1, w2, . . . :

(a) Run M on input w.

(b) If it accepts, emit w1; otherwise, don’t emit anything.

We now show that E is an enumerator for L. For all w ∈ Σ∗, E will eventually run M on
w (since M halts on all previous inputs), and M will accept if and only if w ∈ L, so E will
emit w if and only if w ∈ L. Also, E outputs strings in lexicographic order since it tries
them in lexicographic order.

Second suppose there is an enumerator E that outputs the elements of L in lexicographic
order. If L is finite, then we know L is decidable (indeed, it is regular). We now show that
if L is infinite, L is decidable. Our decider M uses the following algorithm on input w:

1. Run E. For each string w′ emitted by E:

(a) Check if it’s equal to w; if so, halt and accept.

(b) Check it it’s lexicographically greater than w; if so, halt and reject.

(c) If neither of those is true, continue.

We now argue that M is a decider for L: if w ∈ L, then eventually E will emit w, and
at that point M will halt and accept; furthermore, since E emits lexicographically, M will
not have rejected yet because all strings so far will be lexicographically smaller than w. If
w 6∈ L, then E will never emit w, so M will never accept; furthermore, since there are a
finite number of strings lexicographically smaller than w, and L is infinite, E will eventually
emit some string lexicographically greater than w; at this point, M will halt and reject.

Exercise 2.4. Let L = {〈M〉$x : M only uses the first |x| cells of the tape when run on x}.
Show that L is decidable.

Solution: There are only l = |Γ||x| ·|x|·|Q| (number of tapes times number of head positions
times number of states) different configurations M can be in. So it can only run for l + 1
steps before either halting or repeating a configuration (pigeonhole principle). So run M for
l + 1 steps and, if it doesn’t use more than the first |x| cells in that time, it never will.

3

