CS 121 Section &

Harvard University

Fall 2013

Overview

This week we will focus on reviewing the core concepts involved with undecidability, re-
ducibility, Rice’s theorem, incompleteness of mathematics, and so on.

1 Concept Review

1.1 Undecidability

By a cardinality argument, we know that almost all languages are undecidable. This argu-
ment, however, does not give us an explicit construction. The following theorem does just
that.

Theorem 1.1. The language {(M,w) : M accepts the input w} is not decidable.

Proof. Assume {(M,w) : M accepts the input w} is decidable, then the language D =
{{M) : M accepts (M)} is decidable, hence D = {(M) : M does not accepts (M)} is de-
cidable. Suppose D is decidable by M, then (M;) € D iff M; accepts (M,) iff (M) € D,
which is a contradiction. (This is the standard diagonalization argument.) O

1.2 Reducibility

Definition 1.1. A function f : X} — X3 is computable if there is a Turing machine such
that for every input w € 3%, M halts with just f(w) on its tape.

Definition 1.2. A reduction of Ly C X7 to Ly C X% is a computable function f : 37 — 33
such that, for any w € X*, w € Ly if and only if f(w) € Lo, and we write Ly <,, L.

Intuitively, L; reduces to Ly means that L, is not harder than Ls. More formally, we can
express this intution in the following lemma.

Lemma 1.1. If L, <,, Ly and Ly is undecidable, then so it Lo.



1.3 Rice’s theorem

Theorem 1.2 (Rice’s theorem). Let P be any subset of the class of r.e. languages such that
P and its complement are both nonempty. Then the language Lp = {{M) : L(M) € P} is
undecidable.

Intuitively, Rice’s theorem states that Turing machines can not test whether another
Turing machine satisfies a (nontrivial) property. For example, let P be the subset of the
recursively enumerable languages which contains the string a. Then Rice’s theorem claims
that there is no Turing machine which can decide whether a Turing machine accepts a.

2 Exercises

Exercise 2.1. Reductions can be tricky to get the hang of, and you want to avoid “going the
wrong way” with them. In which of these scenarios does Ly <,, Lo provide useful information
(and in those cases, what may we conclude)?

(a) Ly’s decidability is unknown and Ly is undecidable

Nothing

(b) Li’s decidability is unknown and Lo is decidable

L is decidable. This is in Sipser.

(c) Ly is undecidable and Ly’s decidability is unknown

Undecidable. Corollary to the above question.

(d) Ly is decidable and Ls’s decidability is unknown

Nothing

Exercise 2.2. Arque that <,, is a transitive relation.

Let f be the function that reduces A to B, i.e., A <,, B by f, and let g be the function
that reduces B to C, i.e., B <, C by g. Thenw € A <= f(w) € B. Furthermore,
x € B < g(x) € C. It follows that for every w € A, g(f(w)) € C, and furthermore,
for every x € C, there exists a y € B such that g(y) = x, and for every y € B, there
erists a w € A such that f(w) = x, so that for every x € C, there exists a w € A with
g(fw)=x€C. Thusw € A iff g(f(w)) € C, so that A <,, C.

Exercise 2.3. Determine, with proof, whether the following languages are decidable.



(a) L ={(M,z): At some point it its computation on x, M re-enters its start state}

(b)

(c)

(d)

Undecidable. Assume for the sake of contradiction that this language is decidable. We
will show that a decider for this language can decide the halting problem. Given an input
(M, w), modify M so that the start state is split into two states, and the new start state
has no incoming transitions except for those we will specifically add in this construction.
Also, change the accept and reject states so that they are no longer accept / reject states,
but just normal states that (effectively) epsilon transition to the new start state. Make
new accept / reject states that are inaccessible. Now the machine re-enters its start state
iff the original machine would have halted. This construction was a finite transforma-
tion, and something a TM could do, so by combining this machine with a decider for the
language in question, we could decide the halting problem. Contradiction.

L={{x,y): f(x) =y} where f is a fired computable function.

Decidable. Given (x,y), compute f(x) and compare it to y.
CFEqy = {(M) : L(M) is context-free}

Undecidable. The subset of languages which are context-free and the subset of languages
which are not are both non-empty. Apply Rice’s theorem.

L = {{(M) : M calculates 7}, meaning that M : N — N, and M (i) is equal to the i-th
digit in the decimal expansion of .

Undecidable.  Assume {(M) : M calculates 7} is decidable, then the language D =
{{M) : M accepts (M)} is decidable, hence D = {(M) : M does not accepts (M)} is de-
cidable. Suppose D is decidable by My, then (My) € D iff My accepts (M) iff (M) € D,
which is a contradiction. (This is the standard diagonalization argument.)

Exercise 2.4. Show {G : G is a CFG generating x} <); {G : G is a CFG generating xy}.

Given a grammar G, define f(G) to be the grammar which is the same, except that it has
a new start variable S" and a new rule S — Sy (where S was the old start variable). If
x € L(G), then x € L(f(G)), since the same derivation that leads to x from S can be used
to derive xy from Sy. If xy € L(f(Q)), then since Sy must have been a working string after
the first step of the derivation, x must have been generated from S, which means x € L(QG).



