
Harvard University
Computer Science 121

Section Handout 9

1 Concept Review

1.1 Asymptotic Notation

Definition 1.1 (Big-O) For functions f, g : N → R+, f(n) = O(g(n)) if there exists c, N , such
that for all n > N , f(n) ≤ c · g(n). We can also write this as g(n) = Ω(f(n)).

The intuition to have about these is that f = O(g) means “f ≤ g”, ignoring constant factors,
for large enough n. Correspondingly g = Ω(f) means “g ≥ f”, ignoring constant factors, for large
enough n. These two statements are equivalent.

Definition 1.2 (Theta) For functions f, g : N → R+, f(n) = Θ(g(n)) if f(n) = O(g(n)) and
g(n) = O(f(n)).

This intuitively corresponds to f = g, ignoring constant factors, for large enough n.

Definition 1.3 (Small-O) For functions f, g : N → R+, f(n) = o(g(n)) if for any c > 0, there
exists N , such that n > N ⇒ f(n) < c · g(n). We can also write this as g(n) = ω(f(n)).

The intuition for little-o is that if f(n) = o(g(n)), f < g, again ignoring constant factors, and
for large enough n.

These definitions let us compare the running time of various algorithms in a way somewhat
reminiscent to the way we used mapping reductions to reason about the comparative difficulty of
deciding and recognizing languages.

1.2 Time Complexity

TIME(t(n)) = {L : L is decided by a deterministic Turing machine that runs in O(t(n))}.

Does using a deterministic machine matters in this definition?
Does having a polynomial time algorithm guarantee solving the problem efficiently?

P =
⋃
k

TIME(nk).

When we say 〈M〉 we mean a reasonable encoding of a Turing machine. When talking about
decidability / recognizability, the representation often does not matter. Polynomial time algorithms,
however, are on the size of the input. So, the size of your input matters, i.e. it matters how you
represent inputs.

1. What is a reasonable way to represent numbers?

2. What about graphs?



2 Exercises

Exercise 2.1 Which of the following relations hold?

1. 64n + 25 = o(3n4)

2. 12 log2(n) = o(2 log4(n
2))

3. 5n = Ω(6n)

4. 2nn4 = Θ(2n)

5. ω(n2) = O(2n)

6. log2(n)Θ(2n) = ω(n2)

2.1 Solution

1. True. limn→∞
64n+25

3n4 = 0

2. False. 2 log4(n
2) = 4 log4(n) = 2 log2(n), which is proportional to 12 log2(n).

3. True. c = 1/2, and 5n ≥ (1/2)6n for all n ≥ 1.

4. False. For any c, no matter how large, with n = c we will have c4 ∗ 2c > c ∗ 2c, so we cannot
bound it by a constant.

5. False. 3n is ω(n2) but not O(2n).

6. True. limn→∞
n2

c∗log2(n)2n = 0

Exercise 2.2 Give a proof or counterexample for the following claims:

1. If f = o(g) then f = O(g).

2. If f 6= O(g) then g = O(f).

3. If f = O(g), and g = Θ(h), then h = Ω(f)

4. If f = O(g), and h = O(g), then f = Θ(h)

2.2 Solution

1. True. f = o(g) means for all c there exists an N such that f(n) < c ∗ g(n) for all n ≥ N .
Therefore take any c, say c = 1, and then there will be an N such that f(n) ≤ c ∗ g(n) for all
n ≥ N .

2. True. If there is no c such that as n gets large f(n) ≤ c ∗ g(n), then limn→∞ g(n)/f(n) = 0.
This means g = o(f), and so g = O(f) as well.

3. True. There exists some c1, N1 such that f(n) ≤ c1 ∗g(n) for n ≥ N1. Also because g = O(h)
there exists some c2, N2 such that g(n) ≤ c2 ∗ h(n) for all n ≥ N2. This means to show
f = O(h) (equivalent to h = Ω(f)) we can see f(n) ≤ c1 ∗ c2 ∗ h(n) for all n ≥ max(N1, N2)



4. False. f = n, h = n2, g = n3.

Exercise 2.3 Recall that a TM computes a function f if on input w it halts with f(w) on the tape.
Suppose we want a turing machine that computes F such that F (〈n〉) = 〈Fn〉, where is the Fn is
the nth fibonacci number. Show that this can’t be done in polynomial time if the same encoding is
used for 〈n〉 and 〈Fn〉.

Exercise 2.4 Consider an arcade game where the Pac-Man starts in the (1, 1) (top left) cell of an
n by n matrix, and at each step can move either downward or rightward. When Pac-Man enters
cell (i, j), it collects Mi,j coins. Give a polynomial-time algorithm that, given matrix M , computes
a path for Pac-Man to collect as many coins as possible.

Solution. Let s(i, j) be the maximum number of coins that can be collected when Pac-Man
reaches cell (i, j). Then s can be defined recursively as follows:

s(i, j) =

{
max{s(i− 1, j), s(i, j − 1)}+ Mi,j (i ≥ 1, j ≥ 1)

0 (i = 0 or j = 0)

where we extend the domain of s to include i = 0 or j = 0, for convenience. Thus we can use
dynamic programming to compute s(i, j) for all i, j, e.g. proceed by the rows. Once we have
computed all s(i, j), we can recover the optimal path by tracing backwards from (n, n); at each cell
(i, j), we move upward or leftward, depending on which of s(i− 1, j) and s(i, j − 1) is larger.


